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We introduce a numerical method to simulate nonlinear open quantum dynamics of a particle
in situations where its state undergoes significant expansion in phase space while generating small
quantum features at the phase-space Planck scale. Our approach involves simulating the Wigner
function in a time-dependent frame that leverages information from the classical trajectory to e�-
ciently represent the quantum state in phase space. To demonstrate the capabilities of our method,
we examine the open quantum dynamics of a particle evolving in a one-dimensional weak quartic
potential after initially being ground-state cooled in a tight harmonic potential. This numerical
approach is particularly relevant to ongoing e�orts to design, optimize, and understand experiments
targeting the preparation of macroscopic quantum superposition states of massive particles through
nonlinear quantum dynamics.

I. INTRODUCTION

The field of levitodynamics [1], which focuses on levita-
tion and control of microobjects in vacuum, allows us to
study the center-of-mass motional dynamics of a particle
in a highly isolated environment. Since the mechanical
potential in which the particle moves can be controlled
both dynamically [2–4] and statically [5, 6], levitated par-
ticles o�er a unique platform to study nonlinear conser-
vative mechanics. Furthermore, the center-of-mass ther-
mal energy can be removed, either via active or passive
feedback, to the ultimate limit where only quantum fluc-
tuations are present [7–13]. Center-of-mass ground-state
cooling and the control of the mechanical potential open
up the possibility to study nonlinear quantum mechanics
with a microsolid containing billions of atoms [6, 14]. In
order to design, optimize, and understand experimentally
feasible protocols involving nonlinear quantum mechan-
ics, it is crucial to have a reliable numerical tool that
allows us to e�ciently simulate the dynamics while ac-
counting for sources of noise and decoherence. In this pa-
per we provide such a tool in the particularly relevant and
challenging scenario of multi-scale dynamics induced by
center-of-mass cooled massive particles evolving in wide
nonharmonic potentials.

More specifically, the center-of-mass motion of cooled
microparticles exhibits minute fluctuations (i.e., zero-
point motion), smaller than the size of a single atom. Ex-
perimentally feasible nonharmonic potentials are wider
than zero-point motion length scales, that is the dis-
tance between classical turning points is orders of mag-
nitude larger than the zero-point length scale. Hence,
the dynamics triggered in those nonharmonic potential
will generate large phase-space expansions. This expan-
sive dynamics will eventually activate the nonharmonic-
ities in the potential, such as at turning points, which
in the case of coherent dynamics can create phase-space
structures at or even below the Planck scale [15]. This

multiscale phase-space dynamics of the particle’s center-
of-mass state will be studied through the time evolution
of the corresponding Wigner function. The use of the
Wigner function is advantageous as it enables us to in-
corporate sources of noise and decoherence (i.e., open
dynamics) while also clearly identifying quantum fea-
tures (e.g., through negative values in the Wigner func-
tion). To e�ectively describe the scenario of interest,
which involves large phase-space expansions and small
phase-space features and is thus di�erent from previ-
ous studies [16], an e�cient numerical representation of
this specific dynamics is necessary. We propose using a
time-dependent phase-space grid where the grid points
move according to the classical trajectory dictated by
the nonharmonic potential. This procedure places the
grid points where they are most relevant, thereby im-
proving computational e�ciency. We call this numeri-
cal tool Q-Xpanse, and it has proven invaluable in the
design, optimization, and understanding of a recent pro-
posal for generating macroscopic quantum superpositions
of a nanoparticle through the nonlinear quantum me-
chanics induced in a wide double-well potential [6].

This article is structured as follows: In Section II, we
present the theoretical framework for our method, includ-
ing the time-dependent change of variables leading to the
time-dependent phase-space grid. In Section III and in
a dedicated Appendix section, we detail our numerical
implementation using finite di�erences and classical tra-
jectory propagation. We then examine the dynamics in
weak quartic potentials as an example of large expan-
sions with Planck-scale quantum features in Section IV.
Finally, we conclude with our final remarks and outlook
in Section V.
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Closed dynamics for quadratic Hamiltonians are easy!

Simply

W(x, p, t) = W(x − pt/m, p,0)Example of free dynamics

W(x, p, t) = W(xc(x, p, − t), pc(x, p, − t),0)
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Ĥ = ℏω
4 ( ̂p̃2 + ̂̃x2)

|ψ0⟩ = D̂(2) |0⟩

• Displaced ground state

Example: Harmonic oscillator
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|ψ0⟩ = 1
2 (D̂(6) |0⟩ + D̂(−6) |0⟩)

Ĥ = ℏω
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• Cat state

Example: Harmonic oscillator
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Ĥ = ℏω
4

̂p̃2 |ψ0⟩ = |0⟩

{
vx(t) = vx(0) + vp(0)t2

vp(t) = vp(0)

• Spread increases quadratically

Example: Free dynamics
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Ĥ = ℏω
4

̂p̃2

|ψ0⟩ = 1
2 (D̂(6) |0⟩ + D̂(−6) |0⟩)

• Cat state expanding freely

• Fringes transferred to position!

x(t) = x(0) + p(0)
m

t

Example: Free dynamics
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|ψ0⟩ = |0⟩

• Spread increases exponentially!

Ĥ = ℏω
4 ( ̂p̃2 − ̂̃x2)

H. Pino, …, O. Romero-Isart. Q. Sci. Technol. 3, 25001 (2018)
O. Romero-Isart New J. Phys. 19, 123029 (2017)

Example: Inverted harmonic oscillator
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H. Pino, …, O. Romero-Isart. Q. Sci. Technol. 3, 25001 (2018)
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tion and control of microobjects in vacuum, allows us to
study the center-of-mass motional dynamics of a particle
in a highly isolated environment. Since the mechanical
potential in which the particle moves can be controlled
both dynamically [2–4] and statically [5, 6], levitated par-
ticles o�er a unique platform to study nonlinear conser-
vative mechanics. Furthermore, the center-of-mass ther-
mal energy can be removed, either via active or passive
feedback, to the ultimate limit where only quantum fluc-
tuations are present [7–13]. Center-of-mass ground-state
cooling and the control of the mechanical potential open
up the possibility to study nonlinear quantum mechanics
with a microsolid containing billions of atoms [6, 14]. In
order to design, optimize, and understand experimentally
feasible protocols involving nonlinear quantum mechan-
ics, it is crucial to have a reliable numerical tool that
allows us to e�ciently simulate the dynamics while ac-
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center-of-mass cooled massive particles evolving in wide
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than zero-point motion length scales, that is the dis-
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nitude larger than the zero-point length scale. Hence,
the dynamics triggered in those nonharmonic potential
will generate large phase-space expansions. This expan-
sive dynamics will eventually activate the nonharmonic-
ities in the potential, such as at turning points, which
in the case of coherent dynamics can create phase-space
structures at or even below the Planck scale [15]. This

multiscale phase-space dynamics of the particle’s center-
of-mass state will be studied through the time evolution
of the corresponding Wigner function. The use of the
Wigner function is advantageous as it enables us to in-
corporate sources of noise and decoherence (i.e., open
dynamics) while also clearly identifying quantum fea-
tures (e.g., through negative values in the Wigner func-
tion). To e�ectively describe the scenario of interest,
which involves large phase-space expansions and small
phase-space features and is thus di�erent from previ-
ous studies [16], an e�cient numerical representation of
this specific dynamics is necessary. We propose using a
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cal tool Q-Xpanse, and it has proven invaluable in the
design, optimization, and understanding of a recent pro-
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in the case of coherent dynamics can create phase-space
structures at or even below the Planck scale [15]. This

multiscale phase-space dynamics of the particle’s center-
of-mass state will be studied through the time evolution
of the corresponding Wigner function. The use of the
Wigner function is advantageous as it enables us to in-
corporate sources of noise and decoherence (i.e., open
dynamics) while also clearly identifying quantum fea-
tures (e.g., through negative values in the Wigner func-
tion). To e�ectively describe the scenario of interest,
which involves large phase-space expansions and small
phase-space features and is thus di�erent from previ-
ous studies [16], an e�cient numerical representation of
this specific dynamics is necessary. We propose using a
time-dependent phase-space grid where the grid points
move according to the classical trajectory dictated by
the nonharmonic potential. This procedure places the
grid points where they are most relevant, thereby im-
proving computational e�ciency. We call this numeri-
cal tool Q-Xpanse, and it has proven invaluable in the
design, optimization, and understanding of a recent pro-
posal for generating macroscopic quantum superpositions
of a nanoparticle through the nonlinear quantum me-
chanics induced in a wide double-well potential [6].

This article is structured as follows: In Section II, we
present the theoretical framework for our method, includ-
ing the time-dependent change of variables leading to the
time-dependent phase-space grid. In Section III and in
a dedicated Appendix section, we detail our numerical
implementation using finite di�erences and classical tra-
jectory propagation. We then examine the dynamics in
weak quartic potentials as an example of large expan-
sions with Planck-scale quantum features in Section IV.
Finally, we conclude with our final remarks and outlook
in Section V.

Phys. Rev. Research 6, 013262 (2024)

Quantum 8, 1393 (2024)



Classical centroid frame

∂W(x, p, t)
∂t

= (ℒc + ℒq + ℒd) W(x, p, t)Eq of motion of the W function



Classical centroid frame

∂W(x, p, t)
∂t

= (ℒc + ℒq + ℒd) W(x, p, t)Eq of motion of the W function

Mc(t) = exp [−xc(t)
∂
∂x

− pc(t)
∂

∂p ]Move to classical centroid frame

x



Classical centroid frame

∂W(x, p, t)
∂t

= (ℒc + ℒq + ℒd) W(x, p, t)Eq of motion of the W function

Mc(t) = exp [−xc(t)
∂
∂x

− pc(t)
∂

∂p ]Move to classical centroid frame

W(C)(x, p, t) ≡ M−1
c (t)W(x, p, t)

x



Classical centroid frame

∂W(x, p, t)
∂t

= (ℒc + ℒq + ℒd) W(x, p, t)Eq of motion of the W function

Mc(t) = exp [−xc(t)
∂
∂x

− pc(t)
∂

∂p ]Move to classical centroid frame

W(C)(x, p, t) ≡ M−1
c (t)W(x, p, t)

∂W(C)(x, p, t)
∂t

= (ℒ(C)
c + ℒ(C)

q + ℒ(C)
d ) W(C)(x, p, t)

x



Classical centroid frame

∂W(x, p, t)
∂t

= (ℒc + ℒq + ℒd) W(x, p, t)Eq of motion of the W function

Mc(t) = exp [−xc(t)
∂
∂x

− pc(t)
∂

∂p ]Move to classical centroid frame

W(C)(x, p, t) ≡ M−1
c (t)W(x, p, t)

∂W(C)(x, p, t)
∂t

= (ℒ(C)
c + ℒ(C)

q + ℒ(C)
d ) W(C)(x, p, t)

Effective time-dependent potential Ueff(x, t) ≡
∞

∑
n=2

1
n!

∂nU
∂xn (xc(t))xn

x



Gaussian frame

Define quadratic part of effective 
potential

UG(x, t) ≡ 1
2

∂2U
∂x2 (xc(t))x2



Gaussian frame

Define quadratic part of effective 
potential

Gaussian dynamics given by

UG(x, t) ≡ 1
2

∂2U
∂x2 (xc(t))x2

ℒ(C)
G (t) ≡ − p

m
∂
∂x

+ ∂UG(x, t)
∂x

∂
∂p

x



Gaussian frame

Define quadratic part of effective 
potential

Gaussian dynamics given by

UG(x, t) ≡ 1
2

∂2U
∂x2 (xc(t))x2

ℒ(C)
G (t) ≡ − p

m
∂
∂x

+ ∂UG(x, t)
∂x

∂
∂p

Define propagator of Gaussian 
dynamics

MG(t) ≡ exp+ [∫
t

0
dt′ ℒ(C)

G (t′ )]

x



Gaussian frame

Define quadratic part of effective 
potential

Gaussian dynamics given by

UG(x, t) ≡ 1
2

∂2U
∂x2 (xc(t))x2

ℒ(C)
G (t) ≡ − p

m
∂
∂x

+ ∂UG(x, t)
∂x

∂
∂p

Define propagator of Gaussian 
dynamics

MG(t) ≡ exp+ [∫
t

0
dt′ ℒ(C)

G (t′ )]
W(G)(x, p, t) ≡ M−1

G (t)M−1
c (t)W(x, p, t)Centroid+Gaussian frame

x



Gaussian frame

Define quadratic part of effective 
potential

Gaussian dynamics given by

UG(x, t) ≡ 1
2

∂2U
∂x2 (xc(t))x2

ℒ(C)
G (t) ≡ − p

m
∂
∂x

+ ∂UG(x, t)
∂x

∂
∂p

Define propagator of Gaussian 
dynamics

MG(t) ≡ exp+ [∫
t

0
dt′ ℒ(C)

G (t′ )]
W(G)(x, p, t) ≡ M−1

G (t)M−1
c (t)W(x, p, t)Centroid+Gaussian frame

Non-Gaussian generator ℒ(C)
nG(t) ≡ ℒ(C)

c (t) + ℒ(C)
q (t) − ℒ(C)

G (t)

x



Gaussian frame

Define quadratic part of effective 
potential

Gaussian dynamics given by

Dynamical equation (exact)

UG(x, t) ≡ 1
2

∂2U
∂x2 (xc(t))x2

ℒ(C)
G (t) ≡ − p

m
∂
∂x

+ ∂UG(x, t)
∂x

∂
∂p

Define propagator of Gaussian 
dynamics

MG(t) ≡ exp+ [∫
t

0
dt′ ℒ(C)

G (t′ )]
W(G)(x, p, t) ≡ M−1

G (t)M−1
c (t)W(x, p, t)Centroid+Gaussian frame

Non-Gaussian generator ℒ(C)
nG(t) ≡ ℒ(C)

c (t) + ℒ(C)
q (t) − ℒ(C)

G (t)

∂W(G)(x, p, t)
∂t

= (ℒ(G)
nG (t) + ℒ(G)

d (t)) W(G)(x, p, t)

x



Constant angle and linearized noise approximations 

Exact equation to solve

After approximation

W(G)(x, p, t) = exp+ [∫
t

0
dt′ ℒ(G)

nG (t′ ) + ℒ(G)
d (t′ )] W(G)(x, p,0)

∂W(G)(x, p, t)
∂t

= (ℒ(G)
nG (t) + ℒ(G)

d (t)) W(G)(x, p, t)

Formal solution

W(G)(x, p, t) ≈ exp [ΔnG(t) + Δd(t)] W(G)(x, p,0)

Hence
W(x, p, t) ≈ Mc(t)MG(t)exp [ΔnG(t) + Δd(t)] W(G)(x, p,0)



Constant angle and linearized noise approximation



Constant angle and linearized noise approximation



We have developed numerical and analytics methods

Numerical Simulation of Large-Scale Nonlinear Open Quantum Mechanics

M. Roda-Llordes,1, 2 D. Candoli,1, 2 P. T. Grochowski,1, 2, 3 A. Riera-Campeny,1, 2

T. Agrenius,1, 2 J. J. García-Ripoll,4 C. Gonzalez-Ballestero,1, 2 and O. Romero-Isart1, 2

1
Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

2
Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria

3
Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

4
Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain

(Dated: June 5, 2023)

We introduce a numerical method to simulate nonlinear open quantum dynamics of a particle
in situations where its state undergoes significant expansion in phase space while generating small
quantum features at the phase-space Planck scale. Our approach involves simulating the Wigner
function in a time-dependent frame that leverages information from the classical trajectory to e�-
ciently represent the quantum state in phase space. To demonstrate the capabilities of our method,
we examine the open quantum dynamics of a particle evolving in a one-dimensional weak quartic
potential after initially being ground-state cooled in a tight harmonic potential. This numerical
approach is particularly relevant to ongoing e�orts to design, optimize, and understand experiments
targeting the preparation of macroscopic quantum superposition states of massive particles through
nonlinear quantum dynamics.

I. INTRODUCTION
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tuations are present [7–13]. Center-of-mass ground-state
cooling and the control of the mechanical potential open
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allows us to e�ciently simulate the dynamics while ac-
counting for sources of noise and decoherence. In this pa-
per we provide such a tool in the particularly relevant and
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center-of-mass cooled massive particles evolving in wide
nonharmonic potentials.

More specifically, the center-of-mass motion of cooled
microparticles exhibits minute fluctuations (i.e., zero-
point motion), smaller than the size of a single atom. Ex-
perimentally feasible nonharmonic potentials are wider
than zero-point motion length scales, that is the dis-
tance between classical turning points is orders of mag-
nitude larger than the zero-point length scale. Hence,
the dynamics triggered in those nonharmonic potential
will generate large phase-space expansions. This expan-
sive dynamics will eventually activate the nonharmonic-
ities in the potential, such as at turning points, which
in the case of coherent dynamics can create phase-space
structures at or even below the Planck scale [15]. This

multiscale phase-space dynamics of the particle’s center-
of-mass state will be studied through the time evolution
of the corresponding Wigner function. The use of the
Wigner function is advantageous as it enables us to in-
corporate sources of noise and decoherence (i.e., open
dynamics) while also clearly identifying quantum fea-
tures (e.g., through negative values in the Wigner func-
tion). To e�ectively describe the scenario of interest,
which involves large phase-space expansions and small
phase-space features and is thus di�erent from previ-
ous studies [16], an e�cient numerical representation of
this specific dynamics is necessary. We propose using a
time-dependent phase-space grid where the grid points
move according to the classical trajectory dictated by
the nonharmonic potential. This procedure places the
grid points where they are most relevant, thereby im-
proving computational e�ciency. We call this numeri-
cal tool Q-Xpanse, and it has proven invaluable in the
design, optimization, and understanding of a recent pro-
posal for generating macroscopic quantum superpositions
of a nanoparticle through the nonlinear quantum me-
chanics induced in a wide double-well potential [6].

This article is structured as follows: In Section II, we
present the theoretical framework for our method, includ-
ing the time-dependent change of variables leading to the
time-dependent phase-space grid. In Section III and in
a dedicated Appendix section, we detail our numerical
implementation using finite di�erences and classical tra-
jectory propagation. We then examine the dynamics in
weak quartic potentials as an example of large expan-
sions with Planck-scale quantum features in Section IV.
Finally, we conclude with our final remarks and outlook
in Section V.
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