

Lecture 3: Levitated mechanical systems for experiments at the quantum level

Tracy Northup, Institute for Experimental Physics, University of Innsbruck

Introducing a spin as a nonlinear element

silica nanoparticle

+

trapped ion

mechanical oscillator + superconducting qubit

Other approaches:

- levitated particles with internal spin (e.g., NV centers in nanodiamonds)
- without an additional spin: non-Gaussian state preparation via potential engineering

L. Neumeier et al., *Proc. Natl. Acad. Sci. U.S.A.* 121, e2306953121 (2024)

Topics: Lecture 3

- 1. Ions as spins… and as mechanical oscillators
- 2. Confining an ion and a nanomechanical oscillator in the same trap
- 3. Levitated mechanical systems: next (experimental) steps

An ion as an auxiliary qubit

PHYSICAL REVIEW A 88, 033804 (2013)

Optomechanics assisted by a qubit: From dissipative state preparation to many-partite systems

Anika C. Pflanzer,^{*} Oriol Romero-Isart, and J. Ignacio Cirac Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany (Received 3 June 2013; published 4 September 2013)

Dissipative preparation of a Fock-state superposition

Given system parameters,

engineer dissipation so that first state predominates.

- » Ions are a highly controlled two-level system…
	- hyperfine and optical qubits with long coherence times
	- internal state readout via electron shelving
	- coupling between qubits and motion
	- deterministic, high-fidelity, coherent manipulation
- » …well-suited to optomechanics

Generation of nonclassical states

D. M. Meekhof et al., *Phys. Rev. Lett.* 76, 1796 (1996)

Phonon laser K. Vahala et al., *Nat. Phys.* 5, 682 (2009)

Entanglement of mechanical oscillators J. D. Jost et al., *Nature* 459, 683 (2009)

- » Ions are a highly controlled two-level system…
	- hyperfine and optical qubits with long coherence times
	- internal state readout via electron shelving
	- coupling between qubits and motion
	- deterministic, high-fidelity, coherent manipulation
- » …well-suited to optomechanics
	- cavity coupling to qubit demonstrated at infrared wavelengths

Jaynes-Cummings interaction:
 $H_{\rm int} = \hbar g (a \sigma^+ + a^\dagger \sigma^-)$

Example:

Quantum state transfer from an ion to a photon

A. Stute et al., *Nature Photon.* 7, 219 (2013)

B. Casabone et al., *Phys. Rev. Lett.* 114, 023602 (2015)

- » Ions are a highly controlled two-level system…
	- hyperfine and optical qubits with long coherence times
	- internal state readout via electron shelving
	- coupling between qubits and motion
	- deterministic, high-fidelity, coherent manipulation
- » …well-suited to optomechanics
	- cavity coupling to qubit demonstrated at infrared wavelengths
	- strong coupling on the horizon

Ions in fiber-based cavities M. Steiner et al., *Phys. Rev. Lett.* 110, 043003 (2013)

- » Ions are a highly controlled two-level system…
	- hyperfine and optical qubits with long coherence times
	- internal state readout via electron shelving
	- coupling between qubits and motion
	- deterministic, high-fidelity, coherent manipulation
- » …well-suited to optomechanics
	- cavity coupling to qubit demonstrated at infrared wavelengths
	- strong coupling on the horizon

Ions in fiber-based cavities M. Teller et al., *AVS Quantum Sci.* 5, 012002 (2023)

- » Ions are a highly controlled two-level system…
	- hyperfine and optical qubits with long coherence times
	- internal state readout via electron shelving
	- coupling between qubits and motion
	- deterministic, high-fidelity, coherent manipulation
- » …well-suited to optomechanics
	- cavity coupling to qubit demonstrated at infrared wavelengths
	- strong coupling on the horizon
- » ion traps provide a deep confining potential
	- decoupled from heating from optical fields
	- possibility for electrical detection and cooling
- » ions as probes for nanospheres

universität

D. Goldwater, B. A. Stickler, L. Martinetz, T. E. Northup, K. Hornberger, J. Millen, *Quantum Sci. Technol.* 4, 024003 (2019)

Topics: Lecture 3

- 1. Ions as spins… and as mechanical oscillators
- 2. Confining an ion and a nanomechanical oscillator in the same trap
- 3. Levitated mechanical systems: next (experimental) steps

Nanoparticles are confined in a linear Paul trap

Nanoparticles are confined in a linear Paul trap

L. Dania, PhD thesis, University of Innsbruck (2023)

RF electrodes • secular motion at frequency of effective potential (∼kHz)

DC electrodes

frequencyCalcium target Nanoparticle

Paul trap

• RF drive (∼10 kHz)

• residual "micromotion" at RF

foil

Nanoparticles are loaded via laser-induced acoustic desorption

P. Asenbaum et al., *Nat Commun.* 4, 2743 (2013) S. Kuhn et al*., Appl. Phys. Lett*. 111, 253107 (2017) D. S. Bykov, P. Mestres, L. Dania, L. Schmöger, T. E. Northup, *Appl. Phys. Lett.* 115, 034101 (2019)

Nanoparticles are caught within the trap

We turn on the trap as nanoparticles traverse the trap region.

Damping of oscillations consistent with background gas cooling.

- 1. Trap nanoparticle in UHV (with large amplitude).
- 2. Feedback-cool the nanoparticle to millikelvin temperatures in 3D (optical detection, electrical feedback). L. Dania, D. S. Bykov, M. Knoll, P. Mestres, T. E. Northup, *Phys. Rev. Research* 3, 013018 (2021)

L. Dania, K. Heidegger, D. S. Bykov, G. Cerchiari, G. Araneda, T. E. Northup, *Phys. Rev. Lett.* 129, 013601 (2022)

- 3. To operate at higher pressures: close the gate valve that provides access to the vacuum pump.
	- \rightarrow Tunable operation across eight orders of magnitude in pressure.

D. S. Bykov, P. Mestres, L. Dania, L. Schmöger, T. E. Northup, *Appl. Phys. Lett.* 115, 034101 (2019)

Particle charge can

single-charge level.

be measured and

controlled at the

Pressured He-6 mbar

S. Kuhn et al*., Appl. Phys. Lett*. 111, 253107 (2017)

The plan: co-trap two (very different) charged particles

levitated nanoparticle + calcium ion

$$
\frac{Q_2/m_2}{Q_1/m_1} \sim 10^6
$$

universität
innsbruck

Prior work:

• Atomic ions + big molecules for sympathetic cooling Offenberg et al., *Phys. Rev. A* 78, 061401(R) (2008)

• Proposed: positrons + antiprotons for antihydrogen synthesis

Dehmelt, *Phys. Scr.* 1995, 423 (1995)

$$
\frac{m_1}{m_2} \sim 10^3
$$

The solution: dual-frequency drive

It will be important to account for the role of slow-field micromotion when engineering interactions between the particles.

universität

0.25 0.20 0.15 trap stiffness for nanoparticle 0.10 0.05 Ω 0.2 0.4 0.6 0.8 Ω D. S. Bykov, L. Dania, F. Goschin, T. E. Northup, arXiv:2403.02034 trap stiffness for ion

 1.0

camera images of ion

(scale bar: 10 µm)

Topics: Lecture 3

- 1. Ions as spins… and as mechanical oscillators
- 2. Confining an ion and a nanomechanical oscillator in the same trap
- 3. Levitated mechanical systems: next (experimental) steps

Ongoing work: coupling trapped ions to a nanoparticle

C. Gonzalez-Ballestero, A. Deutschmann-Olek, N. Kiesel, M. Aspelmeyer, O. Romero-Isart

- How can we use the ion(s) to cool the nanoparticle?
- How can we use the ion as sensor for the nanoparticle?
- Vision: use the ion qubit to prepare non-Gaussian states of the nanoparticle's motion, mediated by an optical cavity A. Pflanzer, O. Romero-Isart, J. I. Cirac, *Phys. Rev. A* 88, 033804 (2013)

Ongoing work: characterizing noise sources at ultra-high vacuum

Cool the particle and watch it rethermalize:

$$
\langle E(t) \rangle = k_{\rm B} T_0 + k_{\rm B} (T_{\rm cool} - T_0) e^{-\gamma t}
$$

L. Dania, D. S. Bykov, F. Goschin, M. Teller, A. Kassid, T. E. Northup, *Phys. Rev. Lett.* 132, 133602 (2024)

universität
innsbruck

Ongoing work: characterizing noise sources at ultra-high vacuum

universität

- How does the particle rethermalization depend on the trap frequency? Does this correlate with independently measured vibrations?
- How does the particle rethermalization depend on charge? A dependence would point to voltage noise on the electrodes.
	- Can we observe energy transfer between the particle's rotation and center-of-mass motion? Such a coupling would be a decoherence channel.

Ongoing work: can we detect smaller levitated particles, enabling interferometry with larger masses?

As mass increases, one needs increasingly long interaction times & coherence times. The velocity distribution of particles in a beam becomes a liability.

An alternate approach: trap the particles.

Jean Paul Louys Sanso Collaboration: R. Wester, M. Arndt

Quantum Interfaces Group

Ions have a number of strengths that recommend them as auxiliary qubits for preparing non-Gaussian states.

- 1. Ions as spins… and as mechanical oscillators
- 2. Confining an ion and a nanomechanical oscillator in the same trap
- 3. Levitated mechanical systems: next (experimental) steps

We have confined a nanoparticle and ion(s) in the same linear Paul trap, enabled by a dual-frequency drive.

> There are a number of challenging and compelling problems to tackle on our way to the quantum regime.

- » M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, *Rev. Mod. Phys.* 86, 1391 (2014)
- » L. P. Neukirch, A. N. Vamivakas, *Contemp. Phys.* 56, 48 (2015)
- » J. Millen, T. S. Monteiro, R. Pettit, A. N. Vamivakas, *Rep. Prog. Phys.* 83, 026401 (2020)
- » D. C. Moore, A. A. Geraci, *Quant. Sci. Technol.* 6, 014008 (2021)
- » C. Gonzalez-Ballestero, M. Aspelmeyer, L. Novotny, R. Quidant, O. Romero-Isart, *Science* 374, 168 (2021)

Let's bring optomechanical systems into the quantum realm. Let's extend quantum control of atoms and photons to mesoscopic systems.

We measure amplitude, not frequency

We would need to actively stabilize the RF frequency source of our linear Paul trap for it to be stable at the nanohertz level.

The ring-down method is also insensitive to trap anharmonicities.

L. Dania, D. S. Bykov, F. Goschin, M. Teller, A. Kassid, T. E. Northup, *Phys. Rev. Lett.* 132, 122602 (2024)

