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Topics: Lecture 1

Quantum optomechanics:
interactions between light and motion in the quantum regime

Why levitated optomechanics?
What objects should we levitate? And how can we levitate them?
Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime

Let’s extend quantum control
of atoms and photons to
mesoscopic systemes.

Let’s bring optomechanical
systems into the quantum realm.
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Topics; |l ecture 1 Interactions between light and motion have already enabled the
preparation of quantum states of macroscopic mechanical oscillators.

1. Quantum optomechanics:
interactions between light and motion in the quantum regime

Why levitated optomechanics?
What objects should we levitate? And how can we levitate them?

Cooling mechanical motion to the quantum ground state

A

Outlook: into the quantum regime
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Topics; |l ecture 1 Interactions between light and motion have already enabled the
preparation of quantum states of macroscopic mechanical oscillators.

Quantum optomechanics:
interactions between light and motion in the quantum regime

Levitated optomechanical systems offer extreme isolation

: PR,
Why levitated optomechanics: from the environment at room temperature.

What objects should we levitate? And how can we levitate them?
Cooling mechanical motion to the quantum ground state o

Outlook: into the quantum regime

M universitat

N nsb ruck XXVI Giambiagi Winter School | Tracy Northup | July 23, 2024 Page 4



Topics; |l ecture 1 Interactions between light and motion have already enabled the
preparation of quantum states of macroscopic mechanical oscillators.

Quantum optomechanics:

interactions between light and motion in the quantum regime

Why levitated optomechanics?

Levitated optomechanical systems offer extreme isolation
from the environment at room temperature.

What objects should we levitate? And how can we levitate them?

Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime

A wide range of objects can
be levitated in optical,
electrical, and magnetic traps.
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Topics; |l ecture 1 Interactions between light and motion have already enabled the
preparation of quantum states of macroscopic mechanical oscillators.

Quantum optomechanics:
interactions between light and motion in the quantum regime

. . Levitated optomechanical systems offer extreme isolation
Why levitated optomechanics? - Y
from the environment at room temperature.

What objects should we levitate? And how can we levitate them?

A wide range of objects can
be levitated in optical,
electrical, and magnetic traps.

Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime
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helium droplets
C. D. Brown et al., Phys. Rev. Lett. 130,

216001 (2023)
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Topics: Lecture 2

Efficient detection of a levitated object’s motion
Cooling mechanical motion to the quantum ground state

Into the quantum regime

M universitat

N nsb ruck XXVI Giambiagi Winter School | Tracy Northup | July 23, 2024 Page 7



Optical interference enables position detection

In general, nanoparticle detection is based on optical interference between
1. anilluminating light field, and
2. the light scattered by the particle.

nanoparticle as dipole scatterer

— ) B

Cameras also provide information about the particle’s motion,
but are generally too slow to track its oscillation in a confining potential.
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Optical interference enables position detection

a)

¢ Fiber

J. Millen, T. S. Monteiro, R. Pettit, A. N. Vamivakas, Rep. Prog. Phys. 83, 026401 (2020)
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Efficiency depends on detector position and the motional axis

Z axis: propagation axis

X axis: polarization axis
P “forward” “backward”
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F. Tebbenjohanns, M. Frimmer, L. Novotny, Phys. Rev. A 100, 043821 (2019)
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Feedback allows us to damp
the particle’s motion

Side view

j
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Detection+cooling
lasers

Top view
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L. Dania, D. S. Bykov, M. Knoll, P. Mestres, T. E. Northup, Phys. Rev. Res. 3, 013018 (2021)
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e Optical cooling; electric results are similar

Feedback COO“ng d |Oﬂg three axes * Both electric and optical feedback fields overlap with

all three axes
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L. Dania, D. S. Bykov, M. Knoll, P. Mestres, T. E. Northup, Phys. Rev. Res. 3, 013018 (2021)
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How far can we cool?

If we turn up the gain of the feedback cooling, the particle’s motional amplitude
(“temperature”) gets smaller and smaller...

...until it doesn’t.

We run into the limits of back-action: due to noise on our position measurement,
we are heating the particle more than we are cooling it.
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Pressure dependence of feedback cooling (x axis)

L. Dania, D. S. Bykov, M. Knoll, P. Mestres, T. E. Northup,
Phys. Rev. Res. 3, 013018 (2021)
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F. Tebbenjohanns, M. Frimmer, A. Militaru, V. Jain, L. Novotny,
Phys. Rev. Lett. 122, 223601 (2019)

Subsequent measurements indicate that
this discrepancy is position-dependent;

we suspect radiofrequency noise of the

Paul trap.
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Pressure dependence of feedback cooling (x axis)

L. Dania, D. S. Bykov, M. Knoll, P. Mestres, T. E. Northup,

Phys. Rev. Res. 3, 013018 (2021)
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F. Tebbenjohanns, M. Frimmer, A. Militaru, V. Jain, L. Novotny,
Phys. Rev. Lett. 122, 223601 (2019)
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This is the coldest we can get for a given
pressure and detection efficiency.
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Topics: Lecture 2

Efficient detection of a levitated object’s motion
Cooling mechanical motion to the quantum ground state

Into the quantum regime

Here, we see the quantized character of the particle’s motion.

In the quantum ground state, a nanoparticle is still in a thermal state...

... but this is a starting point for preparing superpositions & entanglement.
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Two routes to cooling: passive and active

Passive: cavity cooling Active: feedback cooling
* nanoparticle is coupled to an optical cavity * the position and velocity of the nanoparticle
» the cavity field carries away energy lost by are monitored
the particle » afeedback force (electrical or optical) is
applied to counteract the motion of the
particle
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Two routes to cooling: passive and active

Passive: cavity cooling L0
* nanoparticle is coupled to an optical cavity e
* the cavity field carries away energy lost by

the particle

= tweezer traps a particle at a
cavity node -
scattering into the cavity is
suppressed at the trap frequency
= scattering at the cavity frequency
(blue sideband) is enhanced

mean thermal occupation:
0.43+0.03 phonons (12 pK)

U. Delic, M. Reisenbauer, K. Dare, D. Grass, V. Vuletic, N. Kiesel, M. Aspelmeyer, Science 367, 892 (2020)
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Two routes to cooling: passive and active

Active: feedback cooling

* the position and velocity of the nanoparticle i
are monitored *’

» afeedback force (electrical or optical) is /
applied to counteract the motion of the Y\
particle

= interference between back-
scattered light from nanoparticle
in tweezer and local oscillator

= feedback applied to electrodes Yo—
(particle is charged) zl

mean thermal occupation:
0.65+0.04 phonons

Filter

90:10 (reflection:transmission)
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F. Tebbenjohanns, M. L. Mattana, M. Rossi, M. Frimmer, L. Novotny, Nature 595, 378 (2021)
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Topics: Lecture 2

Efficient detection of a levitated object’s motion
Cooling mechanical motion to the quantum ground state

Into the quantum regime
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Levitated optomechanics: the quantum vision (2021)

kT
state of =7 2m
t h e art 1 Ground-state cooling

We need:

* high-Q oscillators decoupled from their
environment

e ameans to escape the “Gaussian prison”

“"Large quantum
delocalization

~ Tzpm

C. Gonzalez-Ballestero, M. Aspelmeyer,

4 ~’Radius
<

Quantum metrology

L. Novotny, R. Quidant, O. Romero-Isart, Science 374, 168 (2021)

M universitat

N nsbruck XXVI Giambiagi Winter School | Tracy Northup | July 23, 2024 Page 22




A high-Q levitated nanomechanical oscillator

stochastic force:
F h thermalization with

7 + )/Z 4+ .QéZ — environment

1 77% > (z(t)?) = (z(0)?)e 7"

damping rate &« pressure

mass
oscillation frequency L pania, D. s. Bykov, F. Goschin, M. Teller, A. Kassid, T. E. Northup, Phys. Rev. Lett. 132, 133602 (2024)
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. . . . 10—2
A high-Q levitated nanomechanical oscillator
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L. Dania, D. S. Bykov, F. Goschin, M. Teller, A. Kassid, T. E. Northup, Phys. Rev. Lett. 132, 133602 (2024)
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A high-Q levitated nanomechanical oscillator

talk to Santiago Gliosca!

e Q=1.8(6)-100

* Enabling factors: ultra-high vacuum & ion trap 10-8
10-1010-8 10-° 10~*

* One molecule collides with the particle every 1.2 Pressure (mbar)

oscillation cycles!
100 B oo ST

S
Optical trapping is an enabling technology for nanomechanical systems, ‘C’ré 1080 A Lm0
but also presents challenges due to photon recoil and heating. I

= 0] SRS\ —
Hybrid traps are a promising approach for future experiments in the & Of. = 107 Hz
quantum regime. 104 f--m oot
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L. Dania, D. S. Bykov, F. Goschin, M. Teller, A. Kassid, T. E. Northup, Phys. Rev. Lett. 132, 133602 (2024)
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Introducing a spin as a nonlinear element

Other approaches:

» |evitated particles with internal spin
(e.g., NV centers in nanodiamonds)

e without an additional spin:
non-Gaussian state preparation via

potential engineering
L. Neumeier et al., Proc. Natl. Acad. Sci. U.S.A. 121,
2306953121 (2024)

silica nanoparticle
+

trapped ion

particle (2 300 nm)
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Topics; |l ecture 1 Interactions between light and motion have already enabled the
preparation of quantum states of macroscopic mechanical oscillators.

Quantum optomechanics:

interactions between light and motion in the quantum regime

Why levitated optomechanics?

Levitated optomechanical systems offer extreme isolation
from the environment at room temperature.

What objects should we levitate? And how can we levitate them?

Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime

A wide range of objects can
be levitated in optical,
electrical, and magnetic traps.

Both passive and active optical cooling
have been used to bring nanomechanical
motion to the quantum ground state.

The motional ground state is the starting point
for preparing nonclassical states, which may
enable novel sensors & tests of new physics.
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M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

L. P. Neukirch, A. N. Vamivakas, Contemp. Phys. 56, 48 (2015)

J. Millen, T. S. Monteiro, R. Pettit, A. N. Vamivakas, Rep. Prog. Phys. 83, 026401
(2020)

D. C. Moore, A. A. Geraci, Quant. Sci. Technol. 6, 014008 (2021)

C. Gonzalez-Ballestero, M. Aspelmeyer, L. Novotny, R. Quidant, O. Romero-Isart,
Science 374, 168 (2021)

Let’s extend quantum control

Let’s bring optomechanical of atoms and photons to
systems into the quantum realm. MesosCcopic systems.
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