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a silica nanoparticle in an ion trap
(linear Paul trap)

a nanomechanical oscillator in a harmonic potential,
interacting with light

Can we bring the center-of-mass motion
of such oscillators into the quantum regime?
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APPLIED PHYSICS LETTERS VOLUME 19, NUMBER 8

15 OCTOBER 1971

Optical Levitation by Radiation Pressure

A. Ashkin and J. M. Dziedzic

Bell Telephone Labovatories, Holmdel, New Jevsey 07733
(Received 14 June 1971; in final form 13 August 1971)

The stable levitation of small transparent glass spheres by the forces of radiation pressure
has been demonstrated experimentally in air and vacuum down to pressures ~1 Torr. A sin-
gle vertically directed focused TEMy-mode cw laser beam of ~ 250 mW is sufficient to sup-
port stably a ~20-u glass sphere. The restoring forces acting on a particle trapped in an op-
tical potential well were probed optically by a second laser beam, At low pressures, effects
arising from residual radiometric forces were seen. Possible applications are mentioned,

B-E-AM_Z_
A = particle’s starting position
B = levitated position
PC = piezoelectric ceramic
BEAM 1

" RP AO = audio-oscillator
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Levitated optomechanics: the quantum vision (2010)

PHYSICAL REVIEW A 81, 023826 (2010)

Cavity cooling of an optically trapped nanoparticle
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It should be possible to prepare quantum states of motion of Ph ysics
of a levitated nanoparticle coupled to an optical cavity. irnal for physics
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Cavity opto-mechanics using an optically
levitated nanosphere
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Contributed by H. Jeffrey Kimble, November 10, 2009 (sent for review October 17, 2009)

Recently, remarkable advances have been made in coupling anum-  decoupled from the internal degrees of freedom in addition
ber of high-Q modes of nano-mechanical systems to high-finesse  to being mechanically isolated by levitation. In this case, the
optical cavities, with the goal of reaching regimes in which quan-  decoherence and heating rates are fundamentally limited by the
tum behavior can be observed and leveraged toward new applica- momentum recoil of scattered photons and can be reduced
tions. To reach this regime, the coupling between these systems  simply by using smaller spheres. The long coherence time allowed
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Topics: Lecture 1

Quantum optomechanics:
interactions between light and motion in the quantum regime

Why levitated optomechanics?
What objects should we levitate? And how can we levitate them?
Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime

Let’s extend quantum control
of atoms and photons to
mesoscopic systemes.

Let’s bring optomechanical
systems into the quantum realm.
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Quantum optomechanics experiments span a wide range of
experimental platforms

interactions of light & motion Kilometer scale: Enhanced

in the quantum regime LIGO sensitivity using

squeezed vacuum states
J. Aasi et al., Nat. Photon. 7, 613 (2013)

Nanoscale: Laser cooling to

the motional ground state
J. Chan et al., Nature 478, 89 (2011)

Courtesy Caltech/MIT/LIGO Laboratory
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Theoretical foundations of quantum optomechanics

Early work by Braginsky and others:
e Radiation pressure can damp or amplify mechanical motion.

* Quantum fluctuations of radiation pressure limit position measurement.

cavity linewidth

cavity resonance frequency mechanical damping rate

\ optical \| “/ & mechanical
cavity mode
laser

Weav, K Qm, Fm

—). _‘)\oscillation frequency
— position operator for the
mechanical oscillator

annihilation operator for the

optical cavity field M. Aspelmeyer, T. J. Kippenberg, F. Marquardt,

Rev. Mod. Phys. 86, 1391 (2014)
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Light-motion interaction:
mechanical motion shifts the cavity resonance

cavity frequency ohoton mechanical frequency
\ / //‘ phonon
- O H = hcava'a + EQmb'b — hgoa'a(b + bt
g
number of —/ j
ohotons oscillator
position

Problem: gg is small!
Solution: use a strong field;

only fluctuations are quantized — —ﬁgo\/ﬁ((S&T + 0a) (ZA? + bT)

Cost: a linearized interaction /
mean photon number /

fluctuations of

phOtOﬂ field M. Aspelmeyer, T. J. Kippenberg, F. Marquardt,
Rev. Mod. Phys. 86, 1391 (2014)
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What's wrong with a linearized interaction?

= —hgovn(da" + da)(b+ b")
This Hamiltonian maps Gaussian states to Gaussian states.

One way to draw a line between the classical and quantum world:
states with a negative Wigner function (quasiprobability distribution).

To make these non-Gaussian states, we need to introduce a nonlinearity.

non-Gaussian states are the basis for: - -
WB) -2/n 0 2/n
 guantum transducers 1,
e superposition states for sensing %0 P
e testing fpundatlons of quantum 4 trapped-ion cat state
mechanics -3 -2 -l 0 1 2 3 D. Kienzler et al., Phys. Rev. Lett.
Re(pB) 116, 140402 (2016)

M universitat

N nsb ruck XXVI Giambiagi Winter School | Tracy Northup | July 22, 2024 Page 9



A qubit can act as a nonlinear element

“Quantum ground-state and single-phonon control of
a mechanical resonator,” A. D. O’'Connell et al., Nature
464, 697 (2010)

K “Creation and control of multi-phonon Fock \
mechanical oscillator states in a bulk acoustic-wave resonator,”
n Y. Chu et al., Nature 563, 666 (2018)

superconducting qubit

bulk acoustic mode
+

superconducting

l 1 60 um

SQUID
AIN (piezoelectric) \

. - qubit
phonon \ h =420 um

mode — ||| 8%

qubit electric field
\ - Y. Chu et al, Science 358J

e 199 (2017)
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A qubit can act as a nonlinear element

“Quantum ground-state and single-phonon control of
a mechanical resonator,” A. D. O’'Connell et al., Nature

464, 697 (2010) entanglement of the motion of
» two micromechanical oscillators
(1012 atoms each!)
mechanical oscillator C. F. Ockeloen-Korppi et al., Nature
N 556, 478 (2018)
superconducting qubit (Ségil)er et al., Science 372, 622
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A qubit can act as a nonlinear element

“Schrodinger cat” states:
superposition states of a 16-

microgram mechanical oscillator «

M. Bild et al., Science 380, 274 (2023)

~

Al

mode

.

~

“Creation and control of multi-phonon Fock
states in a bulk acoustic-wave resonator,”
Y. Chu et al., Nature 563, 666 (2018)

bulk acoustic mode
+

superconducting

SQUID
IN (piezoelectric) \

—_—

: qubit electric field
- Y. Chu et al, Science 358,/

199 (2017)

. . qubit
phonon " - h =420 um|
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Topics: Lecture 1

Quantum optomechanics:
interactions between light and motion in the quantum regime

Why levitated optomechanics?
What objects should we levitate? And how can we levitate them?
Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime
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A challenge for guantum optomechanics:
reducing the mechanical coupling to the environment

Kilometer scale: Enhanced
LIGO sensitivity using
squeezed vacuum states

J. Aasi et al., Nat. Photon. 7, 613 (2013)

Nanoscale: Laser cooling to

the motional ground state
J. Chan et al., Nature 478, 89 (2011)

=
=
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-
i
-

Courtesy Caltech/MIT/LIGO Laboratory
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reducing the mechanical coupling to the environment

A challenge for guantum optomechanics:
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nanostructure engineering, careful choices of materials, operation

Approach for clamped structures:
at cryogenic temperatures.

Nanoscale: Laser cooling to
the motional ground state
J. Chan et al., Nature 478, 89 (2011)

Page 15

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, Nat.

Nanotechnol. 12, 776 (2017)
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particle is suspended stably against gravity
Levitated optomechanics: the quantum vision (2010)

PHYSICAL REVIEW A 81, 023826 (2010)

Cavity cooling of an optically trapped nanoparticle

Decoupling from the environment: nal Of PhYSics

Department of Physics and Astronomy, U

-access journal for physics

* no mechanical contact: experiments are possible

N
li hysi ) — . .
Applied Physics Group DEP“"‘"”’T?:I,Z{ jif: at room temperature Iperposition of living organisms
(Received 10 OctobeySg low damplng rate under Ultra'high vacuum: sart' 4, Mathieu L Juan?, Romain Quidant*> and

mechanical oscillators with very high Q factors

fut fur Quantenoptik, Hans-Kopfermann-Strasse 1,

i B . . , Germany
ca‘."ty OptO mEChan ° |Ong Coherence t|mes enable the prepa rat|on Of Ciencies Fotoniqugs, Mediterranean Technology Park,
levitated nanospher lona 08360, Spain

exotic states 0 Catalana de Recerca i Estudis Avangats,

D. E. Chang? C. A. Regal®, S. B. Papp®, D. J. — s Spam
E-mail: oriol.romero-isart @mpq.mpg.de

“Institute for Quantum Information and Center for the Physics of Information, California Institute of Technology, Pasadena, CA 91125;°Norman Bridge
Laboratory of Physics 12-33, California Institute of Technology, Pasadena, CA 91125;JILA, National Institute of Standards and Technology, and 7
Department of Physics, University of Colorado, Boulder, CO 80309;°Department of Applied Physics, California Institute of Technology, Pasadena, New Journal of PhySICS 12 (201 0) 033015 (16pp)
CA 91125; and “Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria Received 4 January 2010
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Recently, remarkable advances have been made in coupling anum-  decoupled from the internal degrees of freedom in addition
ber of high-Q modes of nano-mechanical systems to high-finesse  to being mechanically isolated by levitation. In this case, the
optical cavities, with the goal of reaching regimes in which quan-  decoherence and heating rates are fundamentally limited by the
tum behavior can be observed and leveraged toward new applica- momentum recoil of scattered photons and can be reduced
tions. To reach this regime, the coupling between these systems  simply by using smaller spheres. The long coherence time allowed
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Levitated optomechanics: applications in force sensing

...and more exotic proposals:

Advantages for force sensing:
e scattered dark-matter particles

* high Q factor
* high mass density improves acceleration e gravitational waves
sensitivity over atoms/ions e sterile neutrinos...

K. McCormick, Physics 16, s23 (2023);
D. Carney et al., PRX Quantum 4 020315

(2023)

Example: measurement of short-range gravity

SENSING A NUCLEAR KICK ON A SPECK OF PUST

L. Canil, M. Schirber, Physics 17, 108 (2024);
J. Wang et al., Phys. Rev. Lett. 133, 023602

(2024)

[ —

“Searching for new physics using optically levitated sensors,” D. C. Moore
and A. Geraci, Quantum Sci. Technol. 6, 014008 (2021)
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Levitated optomechanics: applications in force sensing

Advantages for force sensing: Other proposals exploit delocalization &
* high Q factor superposition for enhanced sensitivity.
* high mass density improves acceleration
sensitivity over atoms/ions Example: expansion and contracting the
particle wavefunction by dynamically changing
Example: measurement of short-range gravity the potential. <_A7
&

T. Weiss, M. Roda-Llordes, E. Torrontegui,
M. Aspelmeyer, O. Romero-Isart, Phys. Rev.

Lett. 127, 023601 (2021) A
@

“Searching for new physics using optically levitated sensors,” D. C. Moore A A /)<’I}F)
and A. Geraci, Quantum Sci. Technol. 6, 014008 (2021)
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Levitated optomechanics: testing guantum physics

Quantum superpositions of increasingly d
massive, dense objects would allow us to test Ax, Ax,
proposed extensions to quantum mechanics.

@A
e e
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E \
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Proposed test of quantum gravity: By “|-15>’| By \Ikg
* requires a superposition of internal spin (b)

and spatial position (e.g., via an ||C>1 N S i
inhomogeneous external field) --E, /‘\A\ /\\;\
* relies on the extreme isolation of levitated ! L1) |R’¢>;:;‘r\ L1) |R,\|,S;:||_\
systems i ¢ N P Y
X VAP o
“Spin-entanglement witness for quantum gravity,” S. Bose et al., ‘;'L' """""" T (€T — '\/ """"""""""""""" =3 1o, '

Phys. Rev. Lett. 119, 240401 (2017) Spin Correlation Measurements Certifying Entanglement
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Topics: Lecture 1

Quantum optomechanics:
interactions between light and motion in the quantum regime

Why levitated optomechanics?
What objects should we levitate? And how can we levitate them?
Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime
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APPLIED PHYSICS LETTERS VOLUME 19, NUMBER 8 15 OCTOBER 1971

Optical Levitation by Radiation Pressure

A. Ashkin and J. M. Dziedzic

Bell Telephone Labovatories, Holmdel, New Jevsey 07733
(Received 14 June 1971; in final form 13 August 1971)

The stable levitation of small transparent glass spheres by the forces of radiation pressure
has been demonstrated experimentally in air and vacuum down to pressures ~1 Torr. A sin-
gle vertically directed focused TEMy-mode cw laser beam of ~ 250 mW is sufficient to sup-
port stably a ~20-u glass sphere. The restoring forces acting on a particle trapped in an op-
tical potential well were probed optically by a second laser beam, At low pressures, effects
arising from residual radiometric forces were seen. Possible applications are mentioned,

BEAM 2

BEAM 1
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L. P. Neukirch and A. N. Vamivakas,
Contemp. Phys. 56, 48 (2015)

(a) Optical levitation

High-NA objecti 1 1
‘& onjective Optical latsice Single-beam levitation
High-NA parabolic mirror Counter-propagating dual beam

Diameter: 50 nm 500 nm 5 um 25 um
L L L

D. C. Moore and A. A. Geraci, Quant.
Mass: 1 fg 1 pg I ng Sci. Technol. 6, 014008 (2021)

1 1 I

Mechanism:
* Gradient & radiation-pressure forces acting on a dielectric particle

* Rayleigh regime: electric field gradient acting on an induced point dipole
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(b) Electrical levitation

Mechanism:
e Paul trap: inhomogeneous AC potential confines a charged particle

* Trap frequencies depend on the charge-to-mass ratio (typically: kilohertz)
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M. V. Berry and A. K. Geim,
Eur. J. Phys. 18, 307 (1997)

(c) Magnetic levitation

J. F. Hsu, P. Ji, C. W. Lewandowski, and B. D’Urso, Sci. Rep. 6, 30125 (2016)

Mechanism:

 Diamagnetic objects in magnetogravitational traps

* Ferromagnets levitated above superconductors A. Vinante et al., Phys. Rev. Appl. 13, 064027 (2020)
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Some good candidates for levitated (quantum) optomechanics

—_—

silica

— dielectric, ultralow optical absorption; can be charged

* sijlicon

—

internal spin

* NV centers (or other color centers) in nanodiamonds
degree of freedom

* Yb*-doped YLiF4} cooling of internal temperature demonstrated

proposed for high-mass

 magnetically levitated superconductors .
quantum superpositions

M universitat
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* piezoelectric vibration
(challenging for small particles due
to van der Waals forces)

e commercial nebulizer

* electrospray
...but solvents are not ultra-high-

* |aser-induced acoustic desorption
D. S. Bykovy, P. Mestres, L. Dania, L. Schmoger, ’ )))
T. E. Northup, Appl. Phys. Lett. 115, 034101 (2019)

hollow-core photonic-crystal (5ns,3mJ)

fiber transport
D. Grass, J. Fesel, S. G. Hofer, N. Kiesel,
M. Aspelmeyer, Appl. Phys. Lett. 109, 221103 (2016)

How can these particles be (cleanly) trapped? \ | ' |
Pulsed laser \
Deposited

Acoustic Desorbed Paul trap
wave particles

metal
foil

particles
~4mm

A
o

vacuum friendly! read-out vac vac
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s it still optomechanics without optical trapping?

It can bel

Light can interact with a nanoparticle’s motion for

* trapping, but also for
e cooling or heating,
* engineering nonclassical states,

* measurement.
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Topics: Lecture 1

Quantum optomechanics:
interactions between light and motion in the quantum regime

Why levitated optomechanics?
What objects should we levitate? And how can we levitate them?
Cooling mechanical motion to the quantum ground state

Outlook: into the quantum regime
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