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Time Crystals

Do laws of nature allow for the existence of a time-crystalline 
phase?

How to define/characterise a time crystal?

Where to look for it?
V. Khemani, R. Moessner, and S.L. Sondhi, arXiv:1910.10745  
K. Sacha and J. Zakrzewski, Rep. Prog. Phys. 81, 016401 (2018) 
M. P. Zaletel, M. Lukin, C. Monroe, C. Nayak, and F. Wilczek, Rev. Mod. Phys.  95, 031001 (2023) 
K. Sacha, Time Crystals, Springer (2020)

Is it “useful” for possible applications in quantum technologies?



“Many-body” limit cycles as time-crystals in open systems 

These limit cycles can be understood as a 
macroscopic synchronized dynamics characterized 

by a time-dependent order parameter
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Figure 1. Non-equilibrium phases in the Driven Dicke Model. (a) Populations of the N + 1 states in the Dicke ladder (N = 10),
corresponding to the vectors reported in (b). (b) Bloch-sphere representation of the collective spin predicted by the steady-state DDM, for
different values of �. The collective dipole is hŜ�i = �ihŜyi. (c) Experimental setup. A pencil-shape cloud of laser-cooled 87Rb atoms is
prepared in a dipole trap (not shown), placed between four high-numerical aperture lenses. A resonant laser beam propagates along the main
axis of the cloud (1/e2-radius of 5µm). Its linear polarization is perpendicular to the magnetic field ~B, so that only the �+ component of
the light drives the atoms. The emitted light is collected in two different directions by two fiber-coupled avalanche photodiodes, APD// and
APD?, operating in single photon counting modes. APD? gives access to the atomic excited state population (magnetization). A spatial
filtering (SF) separates the laser light from the one emitted axially by the cloud, so that APD// measures the rate of superradiant light emission
�SR(t).

cloud to its diffraction mode extending over a solid angle �⇥
[13, 24–27] : Ñ = Nµ is then the effective number of atoms
corresponding to the cooperative coupling to the diffraction
mode (Method A 3). Here µ ⇠ �/(2⇡`ax) ' 0.003(2) (see
Method C), allowing us to reach Ñ ⇠ 10, a value suffi-
ciently large to observe the crossover between the two non-
equilibrium phases of the DDM. After optically pumping the
atoms in |gi and switching off the trap for ⇠ 500 ns, we
excite the cloud with 150 ns-long pulses of a resonant laser
beam propagating along its main axis. With a temperature
' 200µK, the atoms can be considered as frozen during the
excitation. We repeat this procedure 30 times on the same
cloud and average over ⇠ 2000 clouds. We measure the
number of emitted photons in two orthogonal directions with
avalanche photodiodes (APDs). The first one (APD?), radi-
ally aligned, is sensitive to the excited state population ne(t),
related to the magnetization sz(t) = 2ne(t)� 1 (see Methods
C). This quantity acts as an order parameter for the system.
The second one (APD//) measures the photon emission rate in
the superradiant mode �SR(t) = �hŜ+

Ŝ
�
i [25, 28].

We start by investigating the dynamics of the magnetiza-
tion during the application of a laser excitation pulse. First,
we fix the Rabi frequency of the laser driving to ⌦ = 4.5�
and vary N . Examples of experimental curves for different
N are reported in Fig. 2 (a). For low N , the dynamics is well
described by the solution of the two-level optical Bloch equa-
tions (OBEs), indicating independent atom behavior. As N

increases, we observe a reduction of the frequency and ampli-
tude of the oscillations, until they vanish for the largest N . We
fit each curve by the analytical solution of OBEs [29], with an
effective Rabi frequency ⌦Eff and the decay rate as free pa-

rameters. Figure 2(b) reports the fitted values of ⌦Eff, which
decrease as N increases. Second, we perform the complemen-
tary experiment where we fix N ' 1800 and vary ⌦. We ob-
serve oscillations of ne only above a critical driving strength
⌦c, and ⌦Eff becomes comparable to ⌦ only in the strongly
driven regime (⌦ > 10�).

Our observations can be explained in the framework of the
DDM. When driven by the laser, the ensemble develops a
collective dipole hŜ

�
i, which in turn radiates a field whose

amplitude inside the cloud is hÊSci = �i~�hŜ�
i/d (d is

the dipole matrix element of the e � g transition) [10, 11].
The field EE↵ in the cloud results from the superposition of
the laser field EL = ~⌦/d and of hESci, yielding an ef-
fective Rabi frequency ⌦Eff = dEE↵/~ = ⌦ � i� hŜ

�
i.

For a resonant excitation, hŜ�
i is purely imaginary so that

|⌦Eff|  ⌦: the collective dipole gives rise to a ⇡-shifted field
which screens the laser field. Qualitatively, the screening in-
creases with the amplitude of the collective dipole, hence with
N . To compare quantitatively the data to the DDM, we solve
numerically Eq. (1) to get ne(t), and fit the solution with the
same functional form as for the data. The only free parameter
in the simulation is µ = Ñ/N . We find a good agreement be-
tween the theoretical prediction and the experimental results
for µ ' 0.005, as shown in Fig. 2(b,c). Considering the errors
on the determination of the cloud sizes and atom numbers, this
value is consistent with the inferred one (see Methods C).

We also calculate the steady-state solution of Eq. (1) to
extract hŜ

�
i and thus ⌦Eff, using the value of µ obtained

above. As visible in Fig. 2(b,c), the steady-state values of ⌦E↵

matches the ones extracted from the dynamics. This fact in-
dicates that, for � = 2⌦/�Ñ < 1, the collective coherence
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i/d (d is

the dipole matrix element of the e � g transition) [10, 11].
The field EE↵ in the cloud results from the superposition of
the laser field EL = ~⌦/d and of hESci, yielding an ef-
fective Rabi frequency ⌦Eff = dEE↵/~ = ⌦ � i� hŜ
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Synchronization

Dynamics of two coupled time crystals 
with different periods

 M. Hajdušek, P. Solanki, R. Fazio, and S. Vinjanampathy,  Phys. Rev. Lett. 128, 080603, (2022)



Time crystals & Entanglement

G. Passareli, X. Turkeshi, A. Russomanno, P. Lucignano, M. Schirò, and R.Fazio,  PRL  132, 163401 (2024) 
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Quantum Technology applications

As a working fluid in quantum heat engines
F. Carollo, K. Brandner, and I. Lesanovsky, Phys. Rev. Lett. 125, 240602 (2020) 

In quantum sensing

S. Choi, N.Y. Yao and M.D. Lukin, arXiv:1801.00042 (2017) 
V. Montenegro, M. G. Genoni, A. Bayat, and M. G. A. Paris, arXiv:2301.02103 (2023) 
F. Iemini, R. Fazio, and A. Sanpera, arXiv:2306.03927 (2023) 
A. Cabot, F. Carollo, and I. Lesanovsky, arXiv:2307.13277 (2023) 
L. Viotti, M. Huber, R. Fazio, and G. Manzano, soon on the ArXiv



Lindblad dynamics for a time crystal

F. Iemini et al, Phys. Rev. Lett. 121, 035301 (2018)

- A cloud of N (non-interacting) atoms
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Thermodynamics of a time-crystals
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Quantum trajectories
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Collective dynamics of quantum jumps

Jumps occurs in bursts separated by quite inert time intervals

This behaviours (at finite number of spins) extends for times much 
longer than the typical decay time of the oscillations in the 
magnetisation.

Down jumps for our choice of unraveling …

Quantum jumps (from now on only down jumps) have a 
collective behaviours with statistical properties that reflect 
the existence of time crystal 
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Collective dynamics of quantum jumps
Different trajectories phase-shift with time

Figure 3: Rate of change�jumps#/(�t̃) as a function of the adimensional time t̃ = �0·t 2 [0, 200]

(notice y-axis is in scientific scale) for di↵erent values of the phase-transition parameter �. The

plot on top shows the � = 1.4 case, while the plot on the bottom corresponds to the case with

� = 2.0. The rate of change is shown for 8 di↵erent trajectories (solid colored lines), together

with the mean value hL†
# L#i computed for the steady state ⇧ (black dashed line). We have

considered a system composed of Ns = 140 spins with a dissipation rate �0 = 10�3 and spins

natural frequency ! = 1.

Figure 4: Number of jumps down as a func-

tion of the (normalized) time t̃ = �0 · t (y-

axis is in scientific scale). The plot contains

the number of jumps down along 8 di↵er-

ent trajectories (solid colored lines), together

with the mean value hL†
# L#i computed for the

steady state ⇧ (black dashed line). We have

considered a system composed of Ns = 140

spins with a dissipation rate �0 = 10�3 and

a phase-transition parameter � = ⌦/�0 = 1.1

and spins natural frequency ! = 1.

4

Waiting-time distribution

point disappears while the minimum shown by the function gets wider and wider, allowing for

approximations even less careful than that given by Eq. (7).

2.4 Waiting time distributions at best threshold

We would like to get a picture of the waiting times, this is, the time intervals between ticks,

obtained when taking the best possible threshold for the clock. In order to account for this, we

consider ensembles of N = 5000 trajectories of length t 2 [0, 20⌫] split into 2000 steps. Each

waiting time obtained is considered as an individual count, therefore, every trajectory

will contribute with several counts to the ensemble of waiting times. The distributions observed

in Fig. 14 are obtained considering both for di↵erent values of the phase-transition parameter

� and di↵erent sizes of the system and are shown using the same bar set and displaying the

same range for easier comparison

Figure 14: Waiting time distributions for a sys-

tem composed of Ns = 80, 140 and 200 spins

(consecutively shown), and for di↵erent � val-

ues. The spins have natural frequency ! = 1.0

and the dissipation rate is � = 10�3. These dis-

tributions are obtained by generating ensembles

of N = 5000 trajectories of length t 2 [0, 20⌫]

split into 2000 steps, and considering each wait-

ing time as an individual count, disregarding its

position in the trajectory.

It can be seen that, for any fixed size of the system, the distribution gets sharper as the phase-

transition parameter increases, and becomes wider as it decreases. The mean value of the

waiting times shows a weaker dependence on the � value than that shown by the dispersion.

When comparing systems of di↵erent sizes for a fixed � value, distributions get sharper on

increasing the size of the system.

11

For fixed N,  the distribution gets sharper going deeper in the 
time crystalline phase.  
The mean value of the waiting times shows a weaker 
dependence on the coupling.  
When comparing systems of different sizes at fixed coupling, 
distributions get sharper on increasing the size of the system. 
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Thermodynamics of autonomous clocks
A clock: continuously provides a time reference to an external 
observer.  
Clock as a bipartite system: composed by a pointer and a 
register, which stores classical information and transfer the 
information to an external observer. The pointer produce a 
sequence of signals, which are recorded by the register as ticks.

Autonomous clocks do  not require any time-dependent control that 
would necessitate another external clock.

Autonomous clocks operate out of thermal 
equilibrium (simple example: a clock—powered by 
two thermal baths at different temperatures) T

The laws of thermodynamics dictate a trade-off 
between the dissipated heat and the clock’s 
performance.

It follows that there is an asymmetric flow of information
between the two parts of the clock, which makes the
process irreversible (and singles out a direction for the flow
of time). This naturally connects the problem to the second
law of thermodynamics [20] because irreversibility is
associated with the generation of entropy. One therefore
expects that the suitability of a system for measuring time
implies a corresponding propensity to produce entropy.
However, a precise relationship between entropy produc-
tion and clock performance has not yet been demonstrated.
In fact, we show that such a relationship unavoidably

becomes apparent when considering a more general ques-
tion: What are the minimal resources required to maintain
a quantum clock? In order to answer this question, we
consider an autonomous quantum clock, i.e., a self-
contained device working without any external control
or timing. The clock must be an isolated system evolving
according to a time-independent Hamiltonian [19].
Moreover, the resources powering the clock should not
themselves require another clock to be prepared.
Specifically, we discuss a natural class of autonomous
clocks driven by minimal nonequilibrium resources,
namely, the flow of heat between two thermal reservoirs.
In particular, our model makes explicit the physical
mechanism of the clock’s operation, including its initial-
ization and power supply. We make use of thermodynam-
ical concepts in order to analyze the clock as an
autonomous thermal machine [21–23], with the goal of
producing a series of regular ticks.
This approach allows us to show that the clock’s

irreversible entropy production dictates fundamental
limits on its performance. The performance of the clock

is characterized by (i) its resolution, i.e., how frequently the
clock ticks, and (ii) its accuracy, i.e., how many ticks the
clock provides before its uncertainty becomes greater than
the average time between ticks. We find that a given
resolution and accuracy can be simultaneously achieved
only if the rate of entropy production is sufficiently large;
otherwise, a trade-off exists whereby the desired accuracy
can only be attained by sacrificing some resolution, or vice
versa. Furthermore, in the regime where the resolution is
arbitrarily low, the accuracy is still bounded by the entropy
production, suggesting a quantitative connection between
entropy production and the clock’s arrow of time. Note that
here the relevant entropy production is not associated with
measurements or erasure of the register but rather with the
evolution of the pointer system itself. In the following, we
illustrate this behavior by explicitly calculating the dynam-
ics of a simple clock model. We then present a conjecture,
backed up by general thermodynamic arguments, that such
trade-offs are exhibited by any implementation of an
autonomous clock.

II. AUTONOMOUS QUANTUM CLOCKS

Our objective is to find the fundamental limits on
quantum clocks. To that end, we consider autonomous
clocks, i.e., those which are complete and self-contained. In
particular, the operation of the device should not require
any time-dependent control that would necessitate another
external clock. This allows all resources needed for time-
keeping to be carefully accounted for. In this section, we
discuss some of the general features of autonomous clocks,
before specifying a particular model in Sec. III.

(a)

(c)

(b)

FIG. 1. (a) A pointer system generates a time-ordered sequence of events that are recorded and displayed by the register. (b) We
consider a pointer comprising a two-qubit heat engine that drives a thermally isolated load up a ladder, whose highest-energy state
undergoes radiative decay back to the ground state. Photons are thus repeatedly emitted and registered by a photodetector as ticks of the
clock. (c) Avirtual qubit is a pair of states in the engine’s two-qubit Hilbert space whose energy splitting is resonant with the ladder. The
thermal baths drive population into the virtual qubit’s higher-energy state and out of its lower-energy one, creating a population inversion
described by a negative virtual temperature. Hence, placing the virtual qubit in thermal contact with the ladder forces the load upwards,
thereby performing work.
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There are fundamental costs associated with accurate and 
precise timekeeping

over the levels of the ladder thus rapidly becomes quite
broad, which makes the clock tick slowly and at irregular
time intervals. On the other hand, if Zv → −1, i.e., the
virtual qubit has essentially complete population inversion,
then the probability for the ladder population to move
downward is negligible, resulting in shorter and more
regular time intervals between ticks.

IV. PERFORMANCE OF THE CLOCK

In order for the clock to deliver ticks, the engine must
raise the ladder’s energy and necessarily dissipate energy
into the cold bath. Our goal now is to relate the performance
of the clock to this dissipated energy, which is closely
related to the entropy production. Specifically, we consider
here the heat dissipated into the cold bath per tick of the
clock,

Qc ¼ ðd − 1ÞEc: ð3Þ

Note that this quantity, rather than the heat supplied to the
machine per tick [Qh ¼ ðd − 1ÞEh], represents the funda-
mental minimum energy expenditure associated with one
tick of the clock. This is because, in principle, a large part
of the energy Eγ carried away by the emitted photon could
be captured and recycled (e.g., dumped back into the hot
bath). Consequently, the dissipated heat (3) is associated
with an irreversible entropy production of at least βcQc
per tick.
The performance of our autonomous clock is quantified

by the resolution and accuracy of its ticks. By resolution,
we refer to the average number of ticks the clock provides
per unit time. The ticks are not distributed regularly, and we
characterize the accuracy by the number of ticks provided
before the next tick is uncertain by the average time interval
between ticks [26].

For our model of the autonomous clock, we assume that
after each spontaneous emission event, the entire pointer is
reset to its initial state—specifically, a product state with
the ladder in its ground state and the engine qubits in
equilibrium with their respective baths. This approximation
is valid in the weak-coupling limit, where the engine qubits
are minimally perturbed by their interaction with the ladder.
The ticks of the clock can therefore be described as a
renewal process; i.e., the time between any pair of
consecutive ticks is statistically independent from, and
identically distributed to, the time between any other pair of
consecutive ticks.
Now, let the distribution of waiting times between two

consecutive ticks be characterized by the mean ttick and the
standard deviationΔttick. The resolution of the clock is then

νtick ¼ 1=ttick; ð4Þ

i.e., the average number of ticks the clock provides per
second. The accuracy is the number of ticks N such that the
uncertainty (standard deviation) of the Nth tick time is
equal to the average time between ticks. Since the waiting
times are independent, the uncertainty in the time of the nth
tick is simply

ffiffiffi
n

p
Δttick, and therefore

N ¼
"

ttick
Δttick

#
2

: ð5Þ

Figure 2 illustrates the intimate relationship between the
accuracy N and the resolution νtick versus the dissipated
energy Qc, calculated by numerical solution of the equa-
tions of motion (see Appendix B). We find that, for a given
amount of dissipated energy, there is a trade-off between
accuracy and resolution. In other words, engineering a
good clock featuring both high accuracy and high reso-
lution requires a large amount of energy to be dissipated

(a) (b) (c)

FIG. 2. Illustration of the fundamental trade-off between the dissipated heat and the achievable accuracy and resolution. (a) Accuracy
N as a function of dissipated heat per tick Qc, for various values of the resolution νtick. At low energy, the accuracy increases linearly
with the dissipated energy, independently of the resolution. However, for higher energies, the accuracy saturates. (b) Resolution νtick as a
function of dissipated heat per tickQc, for various values of the accuracyN. The resolution first increases with dissipated energy but then
quickly saturates to a maximal value. (c) Trade-off between accuracy and resolution when the energy dissipation rate is fixed. The data
are computed for fixed values of kBTc ¼ Ew, kBTh ¼ 1000Ew and g ¼ ℏγ ¼ ℏΓ ¼ 0.05Ew, while the ladder dimension d and cold qubit
energy Ec are varied independently. Note that d ≥ 10 for all of the plotted points; thus, kBTc ¼ Ew ≪ Eγ ¼ ðd − 1ÞEw, and we can
safely ignore the absorption of a photon (i.e., the reverse of the decay process).
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A specific focus of the analysis performed here lies on
the identification of trade-offs between different figures of
merit for the clock performance for fixed energy input
and clock complexity. In principle, the performance of a
given clock also depends on the (difference between
the) temperatures TC and TH. However, since we are
primarily interested in upper bounds on the relevant figures
of merit, we often concentrate on the case where the
environment temperature is TC ¼ 0. For the sake of
completeness, calculations for general TC can be found
in Appendixes B and C.
Our clockwork model then consists of two parts, a

d-dimensional “ladder” target system (in the simplest case,
a qubit, d ¼ 2) and a machine, which itself has some
substructure and couples to the ladder via unitary inter-
action. This interaction supplies work (which the machine
draws from its coupling to the heat baths) to the ladder,
driving it to its excited states. The ladder, in turn, couples
irreversibly to an external field, and, thus, these excitations
eventually result in ticks (i.e., energy emitted into the field).
Here, we consider a model where only a nonzero pop-
ulation PtopðtÞ of the “top level”—the most highly excited
state of the ladder—can lead to a tick. Barring some
improbable combination of selection rules, such a single
sharp energy transition can in practice, of course, only be
approximated. However, as becomes clear once we intro-
duce our model, allowing the possibility of clock ticks
occurring due to other transitions serves to spread the
temporal profile of the ticks, decreasing probability con-
centration. In the spirit of deriving idealized but funda-
mental bounds, we therefore focus on decays resulting
from only one particular transition. As a consequence, the

quality of the clockwork depends on the properties of the
particular probability distribution PtopðtÞ as a function of
Schrödinger time t. In particular, an ideal clockwork should
be capable of producing

PtopðtÞ ¼
!
1; if t ¼ t0;

0; otherwise:
ð1Þ

While one would expect a perfect clockwork to be
capable of producing this distribution, it is also clear that
it is not always desirable in conjunction with an irreversible
mechanism. If the probability is arbitrarily temporally
concentrated, i.e., it is close to one for only a short period
of time, but the coupling of the ladder to the external field is
of finite strength, then the emission of the ladder energy
into the field has a chance not to occur during the peak, thus
skipping this tick and worsening the clock performance.
Nonetheless, an ideal clockwork should be capable of
approximating this ideal distribution to the desired pre-
cision set by the irreversible mechanism. Arguably, it seems
implausible that a heat engine itself, which intrinsically also
harnesses the stochastic flow of energy from a hot to a cold
bath, should be able to produce such a perfect signal.
However, it may be reasonable to expect that a sufficiently
complex clockwork, itself driven by a heat engine, could
approximate the ideal ATPC of Eq. (1). In the following, we
therefore investigate the role of the complexity of the
internal structure of the machine in approximating the ideal
ATPC. In order to do so, we decompose the machine into a
set of elementary few-qubit machines, each realizing an
effective virtual qubit [15]. This set allows the number of
(elementary) machines to be used as a proxy for the

TH

ockwork clockwork

clockwork

Complex
clockwork

t

t

t

Ptop (t)

t

Ptop (t)

t

Ptop (t)

t

Simple
clockworkclockwork

Complex
clockwork

Irregular events

Dissipated heat

TC

Cl Simple

No
No

FIG. 1. Illustration of timekeeping at the level of individual irreversible events. The equilibration events that follow the second law of
thermodynamics are inherently stochastic and irregular; in our example, we use radiative decays from an excited energy level of a
quantum system (which we label “top”). By inserting an autonomously operating clockwork between the two out-of-equilibrium
systems (“hot” decaying quantum systems and a “cold” environment), these decays are temporally structured by temporal variation of
the population of the top level, a task that we refer to as autonomous temporal probability concentration. This task concentrates the
probability of such a decay around the oscillatory peaks of excited population. The panel on the right showcases how greater clockwork
complexity leads to a regularization of individual thermalization events, i.e., clock ticks, starting from a thermal population with
randomly distributed ticks depicted above, continuing to a simple clockwork with limited population and still significant variance,
resulting in ticks being more likely during peak populations and, thus, less frequent and more regular, and then finally a complex
clockwork, increasing population while decreasing temporal variance, giving yet more regular ticks. The tick distribution on the right is
exemplary and depicts random ticks, whose spacing approximates the cycle time of the clockwork as the temporal probability becomes
more concentrated around sharp peaks.
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According to thermodynamics, the inevitable increase of entropy allows the past to be distinguished
from the future. From this perspective, any clock must incorporate an irreversible process that allows this
flow of entropy to be tracked. In addition, an integral part of a clock is a clockwork, that is, a system whose
purpose is to temporally concentrate the irreversible events that drive this entropic flow, thereby increasing
the accuracy of the resulting clock ticks compared to counting purely random equilibration events. In this
article, we formalize the task of autonomous temporal probability concentration as the inherent goal of any
clockwork based on thermal gradients. Within this framework, we show that a perfect clockwork can be
approximated arbitrarily well by increasing its complexity. Furthermore, we combine such an idealized
clockwork model, comprised of many qubits, with an irreversible decay mechanism to showcase the
ultimate thermodynamic limits to the measurement of time.

DOI: 10.1103/PhysRevX.11.011046 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

Time plays a special role in quantum physics. While
other physical quantities of interest are represented as
Hermitian operators, there is no observable corresponding
to time itself. That is, it is not possible to find an operator
conjugate to the Hamiltonian (representing energy) that
may serve as “time observable” in the same way as is done
for position and momentum [1] (see, e.g., Ref. [2] for some
caveats to this statement). Time thus plays the role of a
parameter in the equations of motion. Consequently, the
passage of time is estimated via the evolution of a reference
system—a clock. By tracking the dynamical evolution of
(observable quantities related to) such a clock system, it is
possible to extract information about the flow of time; see,
e.g., Refs. [3–10]. But what makes a specific system useful
as a clock? To address this question, we consider time to be
a continuously elapsing parameter t (“Schrödinger time”)
whose value is estimated by a clock in terms of discrete
increments (“ticks”). According to quantum theory, the
evolution of any closed system is time-reversal symmetric,
and, therefore, any complete description of an instrument

that measures time inevitably requires an irreversible part
that breaks this symmetry. By definition, the equilibrium
state of any system features no nontrivial evolution in time.
Thus, the first necessary ingredient for building a clock is
an out-of-equilibrium system, such that the clock can
harness the irreversible transition to higher entropy to
produce ticks.
Entropy-increasing processes are fundamentally stochas-

tic. Consequently, individual events resulting from such a
process provide little information about t and, thus, make
for rather bad clocks. While one could, in principle, use any
equilibrating system as a clock—such as a hot coffee mug
cooling down on your desk—its ticks, e.g., the spontaneous
emissions of thermal photons (which exhibit super-
Poissonian statistics), come at highly irregular intervals
with respect to Schrödinger time. Structuring this irregular
entropy flow into a series of ticks to allow for a precise
synchronization of events is exactly the purpose of a clock.
In this article, we formalize the task of timekeeping by
conceptually separating two stages:

(i) an irreversible process that follows the second law of
thermodynamics, i.e., an out-of-equilibrium system
moving toward equilibrium by means of discrete and
stochastic events, and

(ii) an internal clockwork that temporally concentrates
the probability of an irreversible event occurring,
thereby mitigating the fluctuations of the intervals
between the equilibration events.

As we see, the particular choice of (i) provides the
context for evaluating clock performance, because it
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2 Figures of merit of the clock as a function of the threshold

We want to use this system as a clock. In order to do so, we need a criterion for choosing the

clock ticking. The periodicity shown by the number of jumps down allows for its application

to this matter. We will therefore choose a threshold J0 consisting in a given number of jumps

down, and considered a tick each time the number of jumps overcomes this threshold. In Figure

(5) we provide a sketch for clarifying this choice.

0 T

tick tick

Figure 5: Illustrative diagram depicting time interval [0, T ]. We indicate the moments where a

jump-down takes place as gray arrows pointing down. Each time a certain amount of jumps is

overcome, a ’tick’ is stored and the count returns to zero.

The time intervals between ticks will be called waiting time ⌧ and will depend on the system and

also on the threshold chosen. But which is the threshold J0 that makes the clock perform better?

For addressing this question, we observe three figures of merit characterizing the performance

of the clock. These are

• The resolution is a measure of how frequently the clock ticks and therefore how small

the time interval it can account for is. It is defined as the inverse of the mean (both over

each trajectory and over the ensemble of trajectories) waiting time 1/⌧ .

• The Accuracy is a measure of the relative dispersion of the waiting times, indicating

how many ticks the clock provides before its uncertainty becomes greater than the average

time between ticks. It is defined as Accuracy = (⌧/�⌧ )2, so it will increase if the variance

is greater with respect to the mean waiting time, and decrease if the variance is less

significant in this relation

• The Fano Factor. The Fano Factor of the clock is defined as FF = �2
⌧/⌧ . It can also be

written as the inverse of the product resolution ⇥ Accuracy. Thus, if either the resolution

increases without modifying the accuracy or the accuracy increases without modifying the

resolution, the Fano factor will decrease.

We begin comparing the same two cases � = 1.4 and � = 2.0. The quantities are computed

averaging over N = 2000 trajectories in all the plots.

2.1 Resolution

When observing the resolution, we find it is larger for smaller thresholds and decreases as the

threshold increases. This relation is expected as a longer threshold means asking for more jumps

before counting a tick. For a system that is kept fixed, reaching a bigger number of jumps takes

longer, thus reducing the ticks’ frequency.

As already seen and discussed in section 1 when � = 1.4 fewer jumps take place in the same

time interval than those seen for � = 2.0. Therefore, if the same value J0 is set as threshold,

it will take longer to reach the threshold in the first case, leading to longer waiting time ⌧ and

consequent smaller resolution.
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sequence of ticks out of an irreversible process 
(that leads to an increase of entropy)
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averaging over N = 2000 trajectories in all the plots.
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threshold increases. This relation is expected as a longer threshold means asking for more jumps

before counting a tick. For a system that is kept fixed, reaching a bigger number of jumps takes

longer, thus reducing the ticks’ frequency.

As already seen and discussed in section 1 when � = 1.4 fewer jumps take place in the same

time interval than those seen for � = 2.0. Therefore, if the same value J0 is set as threshold,
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Figure 6: Resolution of the clock as a function of the threshold J0 chosen for counting clicks.

Di↵erent sizes of the system, given by di↵erent numbers Ns of spins were considered The

threshold axis is normalized, for each system size, with S = Ns/2. The dissipation rate is �0 =

10�3, spins natural frequency ! = 1, and a phase-transition parameters are � = ⌦/�0 = 1.4

(left) and � = 2.0 (right). We take t̃ 2 [0, 200] split into 1500 steps and N = 2000 trajectories.

Both plots in Fig. (6) share a common character. Even though there is a di↵erence between

the curves obtained for di↵erent numbers Ns of spins, the di↵erence between curves is much

smaller than the variation of each curve, making it impossible to distinguish them in this scale.

2.2 Accuracy and Fano factor

We turn now our attention to the accuracy and Fano factor. These quantities, involving a

compromise between the waiting time and the dispersion on this length, show a richer structure

with pronounced extreme points. We begin looking at the � = 1.4 case, depicted in Fig. (7).

Figure 7: Accuracy (left) and Fano factor (right) as a function of the threshold J0 chosen for

counting clicks. Di↵erent sizes of the system, given by di↵erent numbers Ns of spins were

considered. The threshold axis is normalized, for each system size, with S = Ns/2. The

dissipation rate is �0 = 10�3, spins’ natural frequency ! = 1, and the phase-transition parameter

is � = ⌦/�0 = 1.4. We take t̃ 2 [0, 200] divided into 1500 steps and N = 2000 trajectories.

As already discussed, greater thresholds imply, for a fixed rate of jumps, longer waiting times.

This is immediately seen as requiring more jumps-down before counting a tick, reaching that
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Threshold/J
<latexit sha1_base64="43MrsrQUhDNqFpI86O/MgYd+nxk=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiYi6rLoRlxV6AvaUCaTSTN0MhNmJtIS8ituXCji1h9x5984bbPQ1gMXDufcy733+AmjSjvOt1VaW9/Y3CpvV3Z29/YP7MNqR4lUYtLGggnZ85EijHLS1lQz0kskQbHPSNcf38387hORigre0tOEeDEacRpSjLSRhnZ1EPtikrUiSVQkWJCfPwztmlN35oCrxC1IDRRoDu2vQSBwGhOuMUNK9V0n0V6GpKaYkbwySBVJEB6jEekbylFMlJfNb8/hqVECGAppims4V39PZChWahr7pjNGOlLL3kz8z+unOrzxMsqTVBOOF4vClEEt4CwIGFBJsGZTQxCW1NwKcYQkwtrEVTEhuMsvr5LORd29qruPl7XGbRFHGRyDE3AGXHANGuAeNEEbYDABz+AVvFm59WK9Wx+L1pJVzByBP7A+fwBDXJSV</latexit>

Threshold/J
<latexit sha1_base64="43MrsrQUhDNqFpI86O/MgYd+nxk=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiYi6rLoRlxV6AvaUCaTSTN0MhNmJtIS8ituXCji1h9x5984bbPQ1gMXDufcy733+AmjSjvOt1VaW9/Y3CpvV3Z29/YP7MNqR4lUYtLGggnZ85EijHLS1lQz0kskQbHPSNcf38387hORigre0tOEeDEacRpSjLSRhnZ1EPtikrUiSVQkWJCfPwztmlN35oCrxC1IDRRoDu2vQSBwGhOuMUNK9V0n0V6GpKaYkbwySBVJEB6jEekbylFMlJfNb8/hqVECGAppims4V39PZChWahr7pjNGOlLL3kz8z+unOrzxMsqTVBOOF4vClEEt4CwIGFBJsGZTQxCW1NwKcYQkwtrEVTEhuMsvr5LORd29qruPl7XGbRFHGRyDE3AGXHANGuAeNEEbYDABz+AVvFm59WK9Wx+L1pJVzByBP7A+fwBDXJSV</latexit>

Threshold/J

Down-jumps are used as ticks. It is useful to introduce a 
threshold that gives a tick after a certain amount of 
quantum jumps.  

The figures of merit will depend on the choice of the 
threshold 

While the resolution is featureless and simply decreases with the 
choice of the threshold, the accuracy shows non-trivial dependence 
associated to the collective dynamics of jumps.

Existence of an optimal 
threshold



Time-crystal as a clock
<latexit sha1_base64="5olDLQQUc8LhXTb/hAA/UKGKd6Q=">AAACD3icbVC7TsMwFHXKq5RXgJHFogIxlQQhYCyPgbEI+pCaKHJcp7VqJ5HtIKIof8DCr7AwgBArKxt/g9tmgJYjXenonHvte48fMyqVZX0bpbn5hcWl8nJlZXVtfcPc3GrJKBGYNHHEItHxkSSMhqSpqGKkEwuCuM9I2x9ejvz2PRGSRuGdSmPictQPaUAxUlryzH2H+9FDdo5xIhBO80PnijCF4K2XTRxF8TDPPbNq1awx4CyxC1IFBRqe+eX0IpxwEirMkJRd24qVmyGh32MkrziJJDHCQ9QnXU1DxIl0s/E9OdzTSg8GkdAVKjhWf09kiEuZcl93cqQGctobif953UQFZ25GwzhRJMSTj4KEQRXBUTiwRwXBiqWaICyo3hXiAdLBKB1hRYdgT588S1pHNfukZt8cV+sXRRxlsAN2wQGwwSmog2vQAE2AwSN4Bq/gzXgyXox342PSWjKKmW3wB8bnDxaDnVY=</latexit> A
cc
u
ra
cy
/�
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<latexit sha1_base64="mu9/nyXyoq9BKWQB69E3B/syL2w=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInmoioh6LHvRmBfsBTQiT7aZdupuE3Y1QQ3+JFw+KePWnePPfuG1z0OqDgcd7M8zMC1POlHacL6u0tLyyulZer2xsbm1X7Z3dtkoySWiLJDyR3RAU5SymLc00p91UUhAhp51wdDX1Ow9UKpbE93qcUl/AIGYRI6CNFNhV71bQARx71yAEBE5g15y6MwP+S9yC1FCBZmB/ev2EZILGmnBQquc6qfZzkJoRTicVL1M0BTKCAe0ZGoOgys9nh0/woVH6OEqkqVjjmfpzIgeh1FiEplOAHqpFbyr+5/UyHV34OYvTTNOYzBdFGcc6wdMUcJ9JSjQfGwJEMnMrJkOQQLTJqmJCcBdf/kvaJ3X3rO7endYal0UcZbSPDtARctE5aqAb1EQtRFCGntALerUerWfrzXqft5asYmYP/YL18Q3NZpKJ</latexit>

⌦/�0

Accuracy limited by entropy production with 
bound connected to thermodynamics uncertainty 
relations (quantum systems may violate these 
bounds) <latexit sha1_base64="q1b0GVv58G9+GqyoLgW1VgyvZVY=">AAACJ3icbVDLSgMxFM3UV62vqks3wSK4KjNF1JXUx8JlRfuATimZ9E4bmnmQZMQy5G/c+CtuBBXRpX9i2s5CWy8Ezj3nHm7u8WLOpLLtLyu3sLi0vJJfLaytb2xuFbd3GjJKBIU6jXgkWh6RwFkIdcUUh1YsgAQeh6Y3vBzrzXsQkkXhnRrF0AlIP2Q+o0QZqls8c31BaOoGXvSQnlOamG6kdepeAVcE33YzSTE61FpjlwOeWhydVnS3WLLL9qTwPHAyUEJZ1brFV7cX0SSAUFFOpGw7dqw6KRFmAQddcBMJMaFD0oe2gSEJQHbSyZ0aHximh/1ImBcqPGF/O1ISSDkKPDMZEDWQs9qY/E9rJ8o/7aQsjBMFIZ0u8hOOVYTHoeEeE0AVHxlAqGDmr5gOiElBmWgLJgRn9uR50KiUneOyc3NUql5kceTRHtpHh8hBJ6iKrlEN1RFFj+gZvaF368l6sT6sz+lozso8u+hPWd8/ziantw==</latexit>

Accuracy

�Stick
 1

2Deep in the time-crystal phase the accuracy 
violates the bound





Quantum Sensing

(i) the initialization of the sensor in 
an "advantageous/entangled" 
state;  

(ii) a time interval in which the 
sensor interacts with the signal of 
interest (in our case h), so that 
the unknown parameter is 
encoded in the state of the 
sensor;  

(iii) a measurement on the quantum 
sensor.  By collecting the statistics 
of the repeated protocol, one 
infers the value of the parameter 
with maximal accuracy.  

The least uncertainty on the estimated parameter 
is settled by the quantum Cramer-Rao bound

<latexit sha1_base64="toiwtYj1ivcD/OvF23OQpivjW6c=">AAACF3icbVBNS8NAEN34WetX1aOXxSLopSQi6rGoiBehglWhCWGznbSLm4/uToQS8i+8+Fe8eFDEq978N25rDn49GHi8N8PMvCCVQqNtf1gTk1PTM7OVuer8wuLScm1l9VInmeLQ5olM1HXANEgRQxsFSrhOFbAokHAV3ByN/KtbUFok8QUOU/Ai1otFKDhDI/m1hnsMEhntb+E2dXswoG6oGM+dInf1QGFOz+iJn/eLkV8Ufq1uN+wx6F/ilKROSrT82rvbTXgWQYxcMq07jp2ilzOFgksoqm6mIWX8hvWgY2jMItBePv6roJtG6dIwUaZipGP1+0TOIq2HUWA6I4Z9/dsbif95nQzDAy8XcZohxPxrUZhJigkdhUS7QgFHOTSEcSXMrZT3mckFTZRVE4Lz++W/5HKn4ew1nPPdevOwjKNC1skG2SIO2SdNckpapE04uSMP5Ik8W/fWo/VivX61TljlzBr5AevtEwDCnpc=</latexit>

�h(t) � 1p
MFh(t)

<latexit sha1_base64="b3hus/KAI3XoSxHhtQe/6x9dIfA="></latexit>

Fh(t) = 4h@h (t, h)|@h (t, h)i � 4|h (t, h)|@h (t, h)i|2
Quantum Fisher information (that for pure states is)

The quantum Fisher information provides the ultimate 
lower bound to the achievable uncertainty for optimized 
quantum measurements



The Model

T

t

t

(b)

(c)(a)

2T

3T

4T

The quantum sensor is described by the 
Hamiltonian       which is coupled  for a given 
time to the signal  

<latexit sha1_base64="dZ58ed+3UHNU/g6Wp0/Ig/UV4wI=">AAAB73icdVBNS8NAEJ34WetX1aOXxSJ4CknVWm9FLz1WsB/QhrLZbtqlm03c3Qgl9E948aCIV/+ON/+N2zSCij4YeLw3w8w8P+ZMacf5sJaWV1bX1gsbxc2t7Z3d0t5+W0WJJLRFIh7Jro8V5UzQlmaa024sKQ59Tjv+5Hrud+6pVCwSt3oaUy/EI8ECRrA2Urc/xho1BmpQKjv2ueNeVk+RYzsZMlJzKzXk5koZcjQHpff+MCJJSIUmHCvVc51YeymWmhFOZ8V+omiMyQSPaM9QgUOqvDS7d4aOjTJEQSRNCY0y9ftEikOlpqFvOkOsx+q3Nxf/8nqJDmpeykScaCrIYlGQcKQjNH8eDZmkRPOpIZhIZm5FZIwlJtpEVDQhfH2K/iftiu1WbffmrFy/yuMowCEcwQm4cAF1aEATWkCAwwM8wbN1Zz1aL9bronXJymcO4Aest0/FE4/O</latexit>

Ĥs
<latexit sha1_base64="FCAZBhJ/sxiQI45Zv3nl6frfl/A=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBahXkpStdZb0YvHCvZD2lA22027dDcJuxOhhP4KLx4U8erP8ea/cZtGUNEHA4/3ZpiZ50WCa7DtDyu3tLyyupZfL2xsbm3vFHf32jqMFWUtGopQdT2imeABawEHwbqRYkR6gnW8ydXc79wzpXkY3MI0Yq4ko4D7nBIw0l1/TAC3y3A8KJbsypntXNROsF2xU6Sk7lTr2MmUEsrQHBTf+8OQxpIFQAXRuufYEbgJUcCpYLNCP9YsInRCRqxnaEAk026SHjzDR0YZYj9UpgLAqfp9IiFS66n0TKckMNa/vbn4l9eLwa+7CQ+iGFhAF4v8WGAI8fx7POSKURBTQwhV3NyK6ZgoQsFkVDAhfH2K/yftasWpVZyb01LjMosjjw7QISojB52jBrpGTdRCFEn0gJ7Qs6WsR+vFel205qxsZh/9gPX2Ce4Zj9k=</latexit>

V̂ (t)

<latexit sha1_base64="ddtv8noaj+VCXafCoq5xXKDSgc8="></latexit>

V̂ =
h

2
sin(!ht+ ✓)

X

i

�̂z
i

<latexit sha1_base64="3AjYmek6jHE6C3cCIzQpxbowrMw=">AAAB6HicdVBNS8NAEN3Ur1q/qh69LBbBU0iq1norevHYgm2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3KYRVPTBwOO9GWbm+TFnSjvOh1VYWl5ZXSuulzY2t7Z3yrt7HRUlkkKbRjyStz5RwJmAtmaaw20sgYQ+h64/uZr73XuQikXiRk9j8EIyEixglGgjtcaDcsWxzxz3onaCHdvJkJG6W61jN1cqKEdzUH7vDyOahCA05USpnuvE2kuJ1IxymJX6iYKY0AkZQc9QQUJQXpodOsNHRhniIJKmhMaZ+n0iJaFS09A3nSHRY/Xbm4t/eb1EB3UvZSJONAi6WBQkHOsIz7/GQyaBaj41hFDJzK2YjokkVJtsSiaEr0/x/6RTtd2a7bZOK43LPI4iOkCH6Bi56Bw10DVqojaiCNADekLP1p31aL1Yr4vWgpXP7KMfsN4+AQ5NjR0=</latexit>

h

The signal is an AC field whose amplitude  
we want to measure

<latexit sha1_base64="FYpfiS545nxPGLGe1C9Y7KqN4oo="></latexit>
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#The sensor is described by a Floquet Hamiltonian that can enter a TC phase



MBL Quantum Sensor

MBL Quantum Sensor: it takes advantage 
from i) resonant condition, ii)  (moderate) 
presence of quantum correlations, iii) exp-
large interrogation time

t

∆
h
(t
) FTC

SQL
ERG/NI

(d)

t−β(t)

t−1

t−1

t−1

tth ∼ eγNt ∼ O(T ) tac ∼ h−1

period-doubling
plateau

correlations
growth

SQL: independent spins

Ergodic phase: correlated spins, non-
resonant

Note: No claim of optimality



Dissipation and sensing

Here we considered the case in which there is no external 
noise. This will strongly affect MBL and the existence of time-
crystals. 

The presence of an external environment is compatible with 
time crystals (dissipative/continuous/boundary TCs)

Quantum enhancements and entropic constraints to Boundary Time Crystals as sensors of AC fields 
Dominic Gribben, Anna Sanpera, R. F., Jamir Marino, Fernando Iemini 
arXiv:2406.06273



Conclusions

Time crystals can be used as autonomous  clocks  

Is the behaviour generic of dissipative TCs ? 

I discussed Floquet TCs as quantum sensors for AC-fields.  

Their optimal performance offer several advantages, overcoming the SQL, 
allowing long-time sensing measurements times exponentially large with the 
number of spins 

Thank you


