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EXPERIMENT: 
 Measuring sub-Planck state 
displacements in phase space

orthogonality� ⇡ 1

|↵| )
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Looking for a classical-like distribution in phase space

We look for a distribution in phase space with the 
following property:

Pure state:

Property should be valid with rotated axes: 



RADON TRANSFORM (1917)

    P(qθ) determines 
uniquely W(q,p)! � 
inverse Radon 
transform 

 → tomography

Cormack and 
Hounsfield: Nobel 
Prize in Medicine 
(1979)

Quantum mechanics:     P(qθ)  
⇒Wigner distribution 

(Bertrand and Bertrand, 1987)



Wigner distribution

Wigner, 1932: Quantum corrections to classical 
statistical mechanics

Moyal, 1949: Average of operators in symmetric form

Density matrix from W:



Examples of Wigner distributions for harmonic oscillator

Ground state Fock state with n=3

Mixed state (|α〉〈α|+|−α〉〈−α|)/2 Superposition ∝  |α〉+|−α〉 



Experimental procedure

Temporal variation of the 
atom-cavity coupling

Field     to be measured is  
injected into the cavity at t=0

β

v=250 m/s

Ω0 / 2π = 46 kHz

w = 5.96 mm

Coherent state 
with 12.7 photons

Damping time 65 ms
ωc /2π =51.1	GHz

{|gi, |ei} ! n = 50, 51

|ei

0-t1 t2

Ω(t) = Ω0 exp[−v2t2/w2]

Tmax ! 42	µs

Switch on 
resonant 

interaction

Switch off 
resonant 

interaction

|α⟩ = e−α2/2 ∑
n

(αn / n !) | n ⟩

−T1 T2



Experimental procedure

Temporal variation of the 
atom-cavity coupling

Modulation of atomic 
frequency —> induces    
phase shift between      and 
 —> time inversion!     

Field     to be measured is  
injected into the cavity at t=0

β

v=250 m/s

Ω0 / 2π = 46 kHz

w = 5.96 mm

Coherent state 
with 12.7 photons

Damping time 65 ms
ωc /2π =51.1	GHz

{|gi, |ei} ! n = 50, 51

Tmax ! 42	µs
|ei

π
|e⟩ |g⟩

−T1 T2



t = − t1 t = 0

|Ψ⟩ ≈ 1
2 [e−iΦ1α2 |α+ ⟩ |Ψ+ ⟩ − eiΦ1α2 |α−⟩ |Ψ−⟩]

|α± ⟩ = |αe∓iΦ1⟩

|Ψ± ⟩ = 1
2

[e∓iΦ1 |e⟩ ± |g⟩]
Φ1 = Ω0T1/4α

Measurement protocol

α(   large)

|Ψ−⟩ |Ψ+ ⟩
| − ⟩x | + ⟩x |ei = (|+ix + |�ix)/

p
2

|±ix = (|ei± |gi)/
p
2

|α−⟩

|α+ ⟩

D = 2α sin Φ1



Measurement protocol

D = 2α sinΦD

	F β( )≡ Pj
g ,e
∑ β( )

d 	ln Pj β( )⎡
⎣

⎤
⎦

dβ
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	⇒

																																																																			

Δβ ≥1/ νF(β),	

T1 =T2( )

Geometric phase



Measurement protocol

D = 2α sinΦD

	F β( )≡ Pj
g ,e
∑ β( )

d 	ln Pj β( )⎡
⎣

⎤
⎦

dβ

⎛
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	⇒

																																																																			

Δβ ≥1/ νF(β),	

Pg = 1
2 (1 + C cos γ)

γ = Ω0T2β + Ω0α(T2 − T1)
C = exp [−Ω2

0(T1 − T2)2/8]
Better to have large T2         
but           Ω2

0(T2 − T1)2/8 ≪ 1



Measurement protocol

D = 2α sinΦD

D̂ β( )=eβ â†−â( )⇒ ĥ=−i â† − â( )

Coherent state: D=0 —>    —> Standard quantum limit: ℱQ = 4
Maximum value: D=2   —>  ℱQ = 4(1 + 4α2) ≈ 6α2 ⇒α

ℱQ = 4⟨(Δ ̂h)2⟩ = 4(1 + D2)

Measured Fisher information 
approaches the quantum Fisher 
information limit for large 
enough values of D (the 
difference is below 1.8% for D>2)

ΔβSQL =1/ F(β) =0.5
Heisenberg scaling



Experimental results

Best result: Fexp = 3SQL 10log10 Fexp /FSQL( )≈2.4	dB

Theoretical Fisher information

ΔβSQL =0.5

ΔβQ =1/ FQ



QUANTUM METROLOGY IN 
LOSSY SYSTEMS



The quantum Fisher information for pure states that evolve according to                               
                               , where X is the parameter to be estimated and         
is a unitary operator, is  

where                                                                                                    

RECALLING: QUANTUM FISHER INFORMATION

In the first lecture, we defined, for a given measurement corresponding 
to the POVM            , the Fisher information, 

and we have also defined the “Quantum Fisher information,” which is 
obtained by maximizing the above expression with respect to all quantum 
measurements: 

The lower bound for the precision in the measurement of the parameter 
X is then                                              , where N is the number of 
repetitions of the experiment. 

{Ê(�)}

F [X; {Ê(�)}] =
Z

d� p(�|X)


⇥ ln p(�|X)

⇥X

�2
=

Z
d�

1

p(�|X)


⇥p(�|X)

⇥X

�2

FQ(X) = max{Ê(�)} F [X; {Ê(�)}]

p
⇥(�Xest)2⇤ � 1/

p
NFQ(X)

|�(X)� = Û(X)|�(0)� Û(X)

FQ(X) = 4⇤(�Ĥ)2⌅0 , ⇤(�Ĥ)2⌅0 ⇥ ⇤�(0)|
h
Ĥ(X)� ⇤Ĥ(X)⌅0

i2
|�(0)⌅

Ĥ(X) ⌘ i
dÛ†(X)

dX Û(X) = �iÛ
†(X)dÛ(X)

dX



Parameter estimation with losses

Loss of a single photon transforms NOON state into a separable state!

η

ʹη

Experimental test with more robust states (for N=2):

|�(N)⇤ = |N, 0⇤+ |0, N⇤⌅
2

⇥ |N � 1, 0⇤ or |0, N � 1⇤
No simple analytical expression for Fisher information!  
For small N, more robust states can be numerically calculated



Parameter estimation with losses - experiments

ψ = x2 20 + x1 11 − x0 02

NOON

ψ SQL

What happens 
when N increases?

η = 1→  no losses
η = 0→  complete loss

States leading to minimum uncertainty 
in the presence of noise:

Coefficients are determined 
numerically for each value of   . 
Losses simulated by a beam splitter 
in the upper arm. These states are 
prepared by two beam splitters.

⌘



                                            where the operator    (“symmetric logarithmic 
derivative”) is defined by the equation

Parameter estimation with losses - theory
C. W. Helstrom, Quantum detection and estimation theory (Academic Press, New York, 
1976); A. S. Holevo, Probabilistic and statistical aspects of quantum theory (North-
Holland, Amsterdam, 1982); S. L. Braunstein and C. M. Caves, PRL 72,  3439 (1994).

(Asymptotically attainable when N→∞)

General expression for the quantum Fisher information:

  δX ≥ 1 / NFQ ρ̂ Xreal( )⎡⎣ ⎤⎦,    FQ ρ̂( ) ≡ max Ê j
F ρ̂, Ê j( )

F ρ̂, Ê j( ) ≡ pj
j
∑ X( )

d  ln pj X( )⎡⎣ ⎤⎦
dx

⎛

⎝
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⎠
⎟

2

,    pj X( ) = Tr ρ̂ X( ) Ê j⎡⎣ ⎤⎦

L̂

For pure states: 

so that, from                                     , one gets the previous result  
                               , with                                  . 

�̂(X) = Û(X)�̂(0)Û †(X)
FQ(X) = 4�(�Ĥ)2⇥0 Ĥ(X) ⌘ i

dÛ†(X)
dX Û(X)

d�̂(X)

dX
=

�̂(X)L̂(X) + L̂(X)�̂(X)

2

General case:    difficult to evaluate - analytic expression not known. L̂

FQ[�̂(X)] = Tr
h
�̂(X)L̂2(X)

i

We have now



Parameter estimation in open systems: 
Extended space approach

S

E |ΦS ,E (x)〉 = ÛS ,E (x) |ψ 〉S | 0〉E

Given initial state and non-unitary evolution, define in S+E

  FQ ≡ max Ê j
(S )⊗1̂

F Êj
(S ) ⊗ 1̂( ) ≤ max Ê j

(S ,E ) F Êj
(S ,E )( ) ≡CQ

Then

Bound is attainable - there is always a 
purification such that

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics 7, 406 (2011); 
Braz. J. Phys. 41, 229 (2011)

Physical meaning of this bound: 
information obtained about 
p a r a m e t e r w h e n S + E i s 
monitored

  CQ = FQ

Least upper bound: Minimization over all 
unitary evolutions in S+E - difficult problem

Then, monitoring S+E yields same 
information  as monitoring S

(Purification)

since measurements on S+E should yield more 
information than measurements on S alone.



Minimization procedure

S

E
|ΦS ,E (x)〉 = ÛS ,E (x) |ψ 〉S | 0〉E

then any other purification can be written as:

There is always an unitary operator acting only on E 
that connects two different purifications of   ρS

Given                                            ,           

|ΨS ,E (x)〉 = uE x( ) |ΦS ,E (x)〉

ĥE(x) = i
dû†

E(x)

dx
ûE(x)Define 

i
d|�S,E(x)i

dx
= ĤS,E(x)|�S,E(x)i

Minimize now       over all Hermitian operators            that act on E. Above 
paper proposes iterative procedure for doing this.

CQ hE(x)

                                            ,           



ʹθ

η

Quantum limits for lossy optical interferometry
η = 1→  no absorption
η = 0→  complete absorption

One uses here a similar strategy: a phase displacement on the environment 
so as to remove additional information on the phase   . ✓

Minimization of the quantum Fisher information of system + environment 
yields an upper bound for the Fisher information of the system:

CQ(⇢̂0) =
4⌘hn̂i0�2n̂0

(1� ⌘)�2n̂0 + ⌘hn̂i0
Note that if                                 then                  , the quantum Fisher 
information for pure states. On the other hand, in the high-dissipation 
limit          , one has                                , yielding a standard-limit scaling:                    

CQ ! �2n̂0

⌘ ⌧ 1

�✓ �
p

(1� ⌘)/4⌘hn̂i0

(1� ⌘)�2n̂0 � ⌘hn̂i0

(1� ⌘)�2n̂0 ⌧ ⌘hn̂i0



ʹθ

η

Quantum limits for lossy optical interferometry

2δθ ≥ 1+ 1+ 1−η
η

N
⎡

⎣
⎢

⎤

⎦
⎥ / N

States with well-defined total photon number:

η = 1→  no absorption
η = 0→  complete absorption

For N sufficiently large,           behavior is always reached!

 

 N ≪ η
1−η

⇒ νδθ ≥1/ N→   Heisenberg limit

N ≫ η
1−η

⇒δθ ≥
1−η

2 νηN
 —>Standard scaling

—>Heisenberg scaling



How good is this bound?
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Comparison between the numerical
maximum value of FQ  and the upper
bound CQ  as a function of η, for 
N = 10 (blue), N = 20 (red), N = 30
(green), and N = 40 (black).

Behavior of the minimum for all 
values of η, as a function of N



Phase diffusion in optical interferometer

⇢̇ = �L[a†a]⇢, L[O]⇢ = 2O⇢O
† �O

†
O⇢� ⇢O

†
O

) ⇢(t) =
X

m.n

e��2(n�m)2⇢n,m(0)|nihm|, � = �t

|�S,E(�)i = e�i�n̂Sei(2�)n̂S x̂E | Si|0Ei) CQ = 4�n2

ûE(�;�) = ei��p̂E/(2�)

) CQ = (1� �)24�n2 + �2/(2�2)

Possible purification:

Trivial!

Choose 
instead:

� !Variational parameter

Ground state of mirror 
(harmonic oscillator)Radiation pressure

|�S,E(�)i = e�i�n̂Sei(2�)n̂S x̂E | Si|0Ei

|�S,E(�)i = e�i�n̂Sei(2�)n̂S x̂E | Si|0Ei|�S,E(�)i = e�i�n̂Sei(2�)n̂S x̂E | Si|0Ei



Phase diffusion in optical interferometer

δφpd ≥
1
ν

1
4Δn2

+ 2β 2⎛
⎝⎜

⎞
⎠⎟

Intrinsic quantum feature Phase diffusion

Very close to numerical value obtained 
by Genoni, Olivares, and Paris for 
Gaussian state - PRL 106, 153603 (2011)
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For Gaussian states:

�n2  2N(N + 1)

(N is the average photon number)

Then:

Copt
Q  Cmax

Q ⌘

2�2 +

1

8N(N + 1)

��1

Comparison with numerical results



Energy-time uncertainty

�E�T � ~
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Energy-time uncertainty

Leonid Mandelstam

Igor Tamm
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and                            where A is an observable 

Energy-time uncertainty
Derivation of Mandelstam and Tamm is based on the relations:
�E�A � 1

2 |h[H,A]i| , ~dhAi
dt = ih[H,A]i ,

of the system (“clock observable”), not explicitly dependent on time, 
and H is the                     Hamiltonian that rules the evolution. From these two 
equations, we get:

Integrating this equation with respect to time, and using that 
R b
a |f(t)|dt �

���
R b
a f(t)dt

���, one gets

�E�t � ~
2

✓
|hAit+�t � hAit|

�A

◆
,

where                                       is the time average of       over the                                                                                                 �A ⌘ (1/�t)
R t+�t
t �Adt

integration region. We define the time interval      as the shortest �T

time for which the average value of A changes by an amount equal to
its averaged standard deviation. Then                      . �E�T � ~/2

�E�A � ~
2

����
dhAi
dt

���� .

�A

 86



, one gets                                         , where

Energy-time uncertainty
Mandelstam and Tamm also presented a more accurate derivation, which 
is directly related to more modern treatments. 

Let us choose now A to be the projection operator onto the initial 
state:                          , so that              and   A = P0 = | 0ih 0| P 2

0 = P0

�P0 =
q

hP 2
0 i � hP0i2 =

p
hP0i � hP0i2 , which implies that

�E � ~
2

�����
dhP0i/dtp
hPoi � hP0i2

����� .

Integrating this expression from 0 to  , and using that
R b
a |f(t)|dt �

���
R b
a f(t)dt

��� �E · ⌧ � ~ arccos
p

hP0i⌧
hP0i⌧ = | 0| ⌧ |2 is the fidelity between the initial and the final states.

One starts again from 

Throughout this lecture, the image of arcos is defined in        .  If 
the final state is orthogonal to the initial one,               andhP0i⌧ = 0 �E · ⌧ � h/4.

�E�A � ~
2

����
dhAi
dt

���� .
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Energy-time uncertainty

Note that the steps leading to                                 also hold if H                  �E � ~
2

����
dhP0i/dtp
hPoi�hP0i2

����
depends on time. Therefore, from this equation one may extract a 
more general expression:

Z ⌧

0
�E(t) dt � ~ arccos

p
F

which is an implicit bound for the time needed to reach a fidelity 
F = |h 0| ⌧ i|2 between the initial and final state.
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Energy-time uncertainty

Geometric derivation.  Inequality derived from the condition 
that actual path followed by the states should be larger than 
geodesic connecting the two states.

Generalization to non-unitary processes? Life-time for decay 
processes? Hamiltonian should not show up!
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Motivation

1. Foundations of quantum mechanics: How to interpret this 
relation? (Heisenberg, Einstein, Bohr, Mandelstam and 
Tamm, Landau and Peierls, Fock and Krylov, Aharonov and 
Bohm, Bhattacharyya) 

2. Computation times: e.g., time taken to flip a spin — 
Quantum speed limit 

3. Quantum-classical transition: Decoherence time 
4. Control of the dynamics of a quantum system: find the 

fastest evolution given initial and final states and some 
restriction on the resources (e.g. the energy) or the general 
structure of the Hamiltonian. 

5. Relation with quantum metrology
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Quantum speed limit for physical processes

Lower bound for time 
needed to reach fidelity                         
                  between 
initial and final states

Special case: Unitary evolution, time-independent Hamiltonian, 
orthogonal states Mandelstam-Tamm

Bures length 
of geodesic

Bures length of actual 
path followed by state of 
the system

�B [⇢̂(0), ⇢̂(⌧)] = 0, FQ(t) = 4h(�H)2i/~2 ) ⌧

p
h(�H)2i � h/4

M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, PRL 110, 050402 (2013)

ΦB ρ̂ 0( ), ρ̂ τ( )⎡⎣ ⎤⎦
⇒arccos

p
�B [⇢̂(0), ⇢̂(⌧)] 

Z ⌧

0

q
FQ(t)/2dt

The previous results imply an extension to open systems of the 
Mandelstam-Tamm relation:
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Quantum speed limit for open systems: 
Purification procedure

D := arccos
p

�B [⇢̂(0), ⇢̂(⌧)] 
Z ⌧

0

q
FQ(t)/4 dt

⇓
D 

Z ⌧

0

q
CQ(t)/4 dt =

Z ⌧

0

q
h�Ĥ

2
S,E(t)i/~ dt.

ĤS,E(t) :=
~
i

dÛ†
S,E(t)

dt
ÛS,E(t)

ÛS,E(t): Evolution of purified state corresponding to ⇢̂S

Problem: No analytical 
expression for FQ

⇓ Purification!
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with                                  .

Quantum speed limit for physical processes: 
amplitude damping channel

|0i|0iE ! |0i|0iE ,

|1i|0iE !
p

P (t)|1i|0iE +
p

1� P (t)|0i|1iE

ÛS,E(t) = exp[�i⇥(t)(�̂+�̂
(E)
� + �̂��̂

(E)
+ )]

⇥(t) = arccos
p

P (t)

D 

Z ⌧

0

q
CQ(t)/4 dt =

Z ⌧

0

q
h�Ĥ

2
S,E(t)i/~ dt.

As seen in Lecture 2, the amplitude-damping channel may be described by 
the following equations (states without indices refer to the system — e.g. a 
two-level atom with     and      being the excited and ground states):

P (t) = exp(��t)

This is a quite natural, physically motivated purification of the evolution of 
two-level atom. The unitary evolution corresponding to this map is

From this and

one gets: D 
p

h�̂+�̂�i arccos[exp(��t/2)]

|1i |0i

�̂+|0i = |1i , �̂�|1i = |0i , �̂2
± = 0
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�̂+�̂� = |1ih1|

Initial population of excited state



Quantum speed limit for physical processes: 
amplitude damping channel (2)

) �⌧ � 2 ln sec(D/
p

h�̂+�̂�i)

Bound is saturated if h�̂+�̂�i = 0 or 1

If initial state is the excited state, then evolution is along a geodesic:

|1ih1| ! P (t)|1ih1|+ [1� P (t)]|0ih0|

Interpretation:

D 
p

h�̂+�̂�i arccos[exp(��⌧/2)]

Initial population of 
excited state

Time for getting at the origin:

Time for getting deexcited:

D = ⇡/2 ) ⌧ = 1!

� = 1/2, D = arccos(�) = ⇡/3, �⌧ = 2 ln 2 ⇡ 1.39

h�̂+�̂�i = 1 )
) � =

p
P (⌧) ) D = arccos[exp(��⌧/2)]

This implies a lower bound for the distance-dependent decay time:
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