General estimation theory

We have shown that it is possible to win over the shot noise in optical
inferferometry, by using states with specific quantum features, like
states with well-defined number of photons or squeezed states. In these
examples, the estimation was obtained through measurement of the
difference of photon numbers in the outgoing arms of the interferometer.
It is not clear whether these are the best possible measurements, or
whether better bounds can be obtained by using other incoming states.

One may ask whether it is possible to find general bounds and
strategies for reaching them, which could be applied to many different
systems, and could eventually help us to identify which are the best
states and the best measurements for achieving the best possible
precision.

This is the aim of this series of lectures: to develop, and apply to
examples, a general estimation theory, capable not only to consider
unitary evolutions of closed systems, like the one described here for
the optical interferometer, but also open (noisy) systems.



General estimation theory

What are the best possible measurements?

What are the best incoming states, in order to get better
precision?

Is it possible to find general bounds and strategies for
reaching them, which could be applied to many different systems?



Parameter estimation in classical and quantum physics

Initial State == Dynamical Process w=p Final State =  Measurement = Estimator

g

1. Prepare probe in suitable initial state
2. Send probe through process to be investigated

3. Choose suitable measurement
4. Associate each experimental result j with estimation

—  Merit quantifier

5X = \/([Xest( H-XI),
d<Xest>/dX‘X=X =1 — Unbiased estimator
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Then X% = A’X = ([Xegt — <Xest>]2> — variance of Xest (average
is taken over all experimental results)
Estimator depends only on the experimental data.




Classical parameter estimation

C.R. ac; R.A. Fisher

H. Cramer

Cramér-Rao bound for unbiased estimators:
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Fisher

N — Number of repetitions of the experiment

information
P.(X)— probability of getting an experimental result j

J

. Olnp(¢X)]”
or yet, for continuous measurements: F(X) = /dﬁp(g\X) { 5% }
where & are the measurement results

(Average over all experimental results)



Derivation of Cramér-Rao relation: See lectures by L. Davidovich at
College de France, 2016:

http://www.if.ufrj.br/~ldavid/eng/show arquivos.php?Td=5

Exercises
1. Show that
F(X) z/dfp(S\X) {amgg){)} :/dfp(gl\x) {819&(5)!()()}
:4/d§ _3\/g§‘X)_ _ _<£(2 lnp(ﬁ\X)>

with similar expressions for a discrete set of measurements.

For instance, 5

2. Let us consider several identical and independent measurements, so
that the probability distribution is p(£|X) = p(&i|X) - - - p(En|X). Show
that FY)(X) = NF(X)


http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5

Understanding the Fisher information (1)

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 42794283, doi:10.1002/grl.50838, 2013 Marcio Mendes Taddei, Ph. D.

New ultrahigh-resolution picture of Earth’s gravity field thesis, Federal University of

Christian Hirt,! Sten Claessens,' Thomas Fecher,> Michael Kuhn,' Roland Pail,? R'? de Janelro' available at
and Moritz Rexer'* arXiv:1407.4343vl [quan‘r-ph]

The gravitational field is measured by undergraduate students, via an inclined-
plane experiment, in Two labs, situated at Hudscaran (Peruvian Andes) and the
Artic Sea, so gir. is different in both cases. Their precision is one decimal place.
The same measurement is made by higher-precision satellites, with one additional
decimal place.
Undergraduate students Satellite measurement
Py (8irue) P (8true)

o o lﬂl gTrue:9.76392 W\/S2
0.06 | 0.06 | 1 Jtrue=9.83366 m/s?
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Values of Pi(girwe) for a measurement of g in Huascaran, in the Andes (blue

circles) and at the Arctic Sea (red squares). The distributions within each image are dif-
ferent because so is gin.. Measurement as made in a simple laboratory (left) is compared
to that by higher-precision satellites (right).




Understanding the Fisher information (2)

The higher precision of the satellite experiments implies that it is
easier to distinguish the true values of g from the Pk of these
measurements. Important question: How much does the outcome
distribution change by a change of the underlying true value of the
parameter? I show now that the Fisher information is a measure of this
change.

The distance between two probability distributions {P«} for a given set
{k} of outcomes, which differ because they belong to two different
values x and x' of the parameter, can be defined by the Hellinger
expressnon Dr:

(2, 2') \/Z\/T \/Pk:}

Then,

D% (x, x+dx) = %Z [\/Pk (x + dx) — Pk(az)r = %Z lex Py (x ):|2d332

F(X) as a measure of change of
the probability distribution!

and




Understanding the Fisher information (3)

The expression for the Hellinger distance can be written in terms of the
fidelity between the two distributions:

Dy (z,a') = \/ S [VB@ - VE@)] =1 - Ve

where . Z 2

Dy (x,2") = Z V Pi(x)Pe(2) | (=1 for x=x)

|k

Therefore:

> Speed of change



I.2 - Quantum parameter
estimation



Quantum parameter estimation

Initial State == Dynamical Process w=p Final State =P  Measurement == Estimator

The general idea is the same as before: one sends a probe through a
parameter-dependent dynamical process and one measures the final
state to determine the parameter. The precision in the
determination of the parameter depends now on the
distinguishability between quantum states corresponding to nearby
values of the parameter.
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Example: Optical interferometry
.

* Standard limit (shot noise)

(

~ exp[—<n>(59)2] = 60 =1/./(n)

Possible method to increase precision for the same average number
of photons: Use NOON states [J. J. Bolinguer et al., PRA 54, R4649
(1996). J. P. Dowling, PRA 57, 4736 (1998)]

‘II/(N)>:(\N,O>+ O,N))/\/fe\y/(N,g»:(‘N,O>+ewe

O,N))/\/E, ((n)zN)
| cos®(N§6/2) =0
= 00 = /N

HETISENBERG LIMIT — Precision is better, for the same
amount of resources (average number of photons) 44

(w(N) gu(N,é@))\2 =cos’(N69/2)= 60 ~1/N




Quantum Fisher Information

(Helstrom, Holevo, Braunstein and Caves)

This corresponds to a given quantum measurement. Ultimate lower
bound for ((AX.)?): optimize over all quantum measurements
so that

%(X) = maX{Eé}F(XQ{Eg }) Quantum Fisher Information




Quantum Fisher information for pure states

(See notes for derivation)

Initial state of the probe: |1/(0))
Final X-dependent state: [1(X)) = U(X)|(0)), U(X) unitary operator.

Then (Helstrom 1976):

Fo(X) =A%), ((AH))o = (0(0)] |

where

_dUT(X) ¢
H(X) =i% 2 U(X)

If U(X) = exp(i0X), Oindependent of X, then H = O

Sx>1/ 2\/v<AI§I2>| — Should maximize the variance to
get better precision!



Another expression for the quantum Fisher information

From
Fo(X) = 4(AM)2)o,  ((AH)?)o = ((0)] [ H(X) — (A (X))o [(0))

~ arrt ~
and H(X) =i 0(x)

it follows that

o

Fo(X) =4 (X))

(X)) dp(X)) |d<¢<X>r
dX

dX dX

Exercise: Show this!



Geometrical interpretation of the quantum Fisher information

Remember ThaT for classical probability distributions, one had
1 2

g (w, 1) = LW% L bp(ra) =1—

Using the expressuons of the probabllmes in terms of Ex, the Bures fidelity

between two densuTy operators p and & is defined as
-9 7 2

b5(p,0) = min Z \/Tr (pEp)Tr(6E,)| = min Z /P (p)Py(6)

Minimization of ®xleads to maximization of F(x), thus yielding the quantum

Fisher information. /%/2 — speed

Bures' Fidelity: @ ,(p,,p,) (Tr\/ /31”2,62,51”2) :‘<l//1‘l//2>‘2 (pure states)

= ®,[5(X).p(X+6X)]=1-(X) [ p(X)]/4+0| (6X)"|




Example 1: Optical interferometry

7 = a'a — Generator of phase displacements |[a) — |aexp(if))

= Fo(0) = 4((An)?)owhere ((An)?), is the photon-number variance in

the upper arm.

— 50 > 1 (v=1) v — Number of repetitions

A((AR)2)o = 4(R) = 60 >

24/(n)

This lower bound is better by a factor of two than the bound found before,
which was 08_, = 1/@. This earlier bound corresponds to comparing the
displaced-phase coherent state in the upper arm of an interferometer with
an undisplaced coherent state with the same amplitude in the other arm.

The result found here indicates that a better measurement of the phase is
possible: indeed, a homodyne measurement allows the comparison of the
displaced coherent state with a classical reference field (local oscillator),
which is just a coherent state with a number of photons much larger than
that of the measured state — this yields a better precision in the estimation

of the phase. 49



Example 1: Optical interferometry

S Ema
- s D

Increasing the precision: maximize variance with NOON states:
W(N))= (‘N»0>+\0,N>)/\/§ —> entangled state
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Example 2: Spatial displacement

< X > < X >
! o P R Tt A ) ™
W(X)) = X P1(0) = H = z-flLXU(X) _p
Fo(X) = 4((AP)?) AX)?) > ]
Q(X) = 4(APPY0 = (AX)) 2 g

Coherent state: ((AP)?)y =1/2 = ((AX)?) =1/2 —> standard
quantum limit — coherent state saturates Cramér-Rao bound

Maximizing variance of P for better precision: e.g., squeezed states

—> Also saturate the bound (Gaussian states)
Looks like Heisenberg uncertainty relation, but X is a parameter,

not an operator! 5|



Example 3: Phase-space displacement
A sensitive instrument... BT GNATIOG ey (PR
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PHYSICAL REVIEW A 73, 023803 (2006)

Sub-Planck phase-space structures and Heisenberg-limited measurements

S u b - P | anc k F. Toscano,’ D. A. R. Dalvit,” L. Davidovich,' and W. H. Zurek”
sens ITI VlTy PHYSICAL REVIE\%% A 94, 022313 (2016)

Measurement of a microwave field amplitude beyond the standard quantum limit

M. Penasa,’ S. Gerlich,' T. Rybarczyk,' V. Métillon," M. Brune,' J. M. Raimond,’ S. Haroche,'
L. Davidovich,” and I. Dotsenko""
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Possible strategies for quantum-enhanced metrology (1)

Single probe

Recall that 7o (|v)) = 4((AH)?) so in order to increase the precision one
needs to choose a state|y)that maximizes the variance ((AH)?). If H
has a discrete and bounded spectrum, this is accomplished by letting

1
‘¢>Opt — ﬁ
where [Amax) and [Amin) are eigenstates of H corresponding to the
maximum and minimum eigenvalues.

(‘)‘max> + ‘)‘min>)

Then ((AH)?) = (Amax — Amin)?/4 and

1 (v —> number of repetitions of single
\/; ()\max _ )\min) pr'obe exper'imen’r)

Ay =

Question: What is the best strategy if one has N probes?

53



Entanglement-assisted parameter estimation: phase estimation

The problem. One wants to estimate a small change of phase between states
of a two-level system, which would allow to estimate say a small
electromagnetic field, or yet a transition frequency between the two states.

Two possible strategies:
Separable

(0)+]1) expli(1+.)612](0)+]1)
o)+ 27—
P )—(.
D,
ps=(1+cos¢)/2
1-ps=(1-cosg¢)/2

yes

0) + |1 0)+e*|1)

no
yes

0) +[1 )+e|1)

0) + |1 0)+¢”|1)

;

ps(yes)
ps (no)

_( 1 ap, 2= 1 - ap, ’
FS(¢) (ps-l_l_ps)[ 8¢] _ps(l_ps)_[a¢]
=1
Sps =1/ [NFy(¢) =1//N

[Figures adapted from V. Giovannetti, S. Lloyd and L.
Maccone, Nature Photonics 5, 222-229 (2011)]
Entangled

. KA (o)
o A
¢
pi(yes)=p, =(1+cosNg)/2
pr(no)=1-p, =(1-cosN¢)/2

yes
) % ( no

12

1 --apE
Pk (1_pE)_ 09 |

Op, =1/ /NF,(¢)=1/N

=1




Entanglement-assisted parameter estimation: phase estimation (2)

Are these the best measurements?

0)+[1)) = expli(1+.)¢/2](0)+[1))

1. Separable qubits.

We know that for the best measurement 7y (¢) = 4((AH)?), ,where H
here is the generator of phase displacements: H = (1 4+ 6.)/2. Since for the
initial state |+) we have ((AH)?)o = 1/4, it follows that the measurement of &,
maximizes the Fisher information, leading to the corresponding Cramér-Rao
bound in 6¢ > 1/\/NFq(¢) = 1/V N, the so-called standard limit.

2. Entangled qubits.

The genem‘ror' of phase displacements is H = Zz 1 (1 + 51 ) /2, so that
(W(0)[(AH)2|1(0)) = N2 /4, which means that the above measurement

leads to the maximum value of the Fisher information and to the Cramér-
Rao bound in 0¢ > 1/\/]:Q(¢) = 1/N,the Heisenberg limit.
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Entanglement-assisted parameter estimation: phase estimation (3)

2. Entangled qubits.

Bound can be achieved with local measurements! Measure observable
GON — 5 (1) X (3(2) - X cAféN) on final state ‘()>N +eiN¢‘1>N

Get <6®N> =cos(Ng)
AG®Y =|sin(N)

So, from error propagation:
AG®Y 1
0 =7 ®N TN
oG )1ag N

which coincides with the Heisenberg bound.

Therefore, only the initial entanglement counts!
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EXPERIMENT 2:
Measuring sub-Planck state
displacements in phase space

1
B ~ — = orthogonality

o

0 3 2 P
X 4
PHYSICAL REVIEW A 73, 023803 (2006)
‘ cat> = (|OL> + ‘ — > ) / N2 Sub-Planck phase-space structures and Heisenberg-limited measurements

F. Toscano,' D. A. R. Dalvit,” L. Davidovich,' and W. H. Zurek’

PHYSICAL REVIEW A 94, 022313 (2016)

S

Measurement of a microwave field amplitude beyond the standard quantum limit

M. Penasa,’ S. Gerlich,' T. Rybarczyk,' V. Métillon,' M. Brune,' J. M. Raimond,' S. Haroche,'
L. Davidovich,? and I. Dotsenko'"




Looking for a classical-like distribution in phase space

We look for a distribution in phase space with the
following property:

|dpw (g.p)=(q]p

Pure state:

(abla)=N @) . (|6 p)=P (p)

Property should be valid with rotated axes:

q). [dqw (¢.p)=(p|p|p)

JW(% cos — p, sinB, g, sin® + p, cosO )dp,
U ©)pU ©)]4)

= P(q,)=(g



RADON TRANSFORM (1917)

P(gg) determines
uniquely W(q,p)! —
inverse Radon
transform

— tfomography

Cormack and 5

Hounsfield: Nobel Quantum mechanics:  P(qgp)
Prize in Medicine =Wigner distribution
(1979)

(Bertrand and Bertrand, 1987)




Wigner distribution

Wigner, 1932: Quantum corrections to classical
x) = X|x)

—ipx'h
x—x'>e a7 s

Va\

statistical mechanics X

1 .
W(x,p)z—n—h (x+x'p

Moyal, 1949: Average of operators in symmetric form
Tr[ﬁ (xp + ﬁfc)/Z] = dede (x, p)xp
Density matrix from W:
(x+x'[plx—x")= J‘W(x,p)ezlpx'/hdp/h

A

P




Examples of Wigner distributions for harmonic oscillator

Ground state Fock state with n=3
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Experimental procedure

Coherent state
with 12.7 photons
{lg), le)} — n = 150,51

Q,/2mx =46 kHz
T =42 us

Temporal variation of the
atom-cavity coupling

>

Modulation of
atomic frequency (O, — )

>

Field g to be measured is
injected into the cavity at =0

(a) Damping time 65 ms
¢ | . /27=51.1GHz
w=5.96 mm
v=250 m/s
(b) Q4
(C) waA t
5 - [
(d) _ 4 -t, t, t
O
I3
2,
g=

t

>



Measurement protocol

|= )x

Time inversion
o, —>7 phase ShlfT
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T2 —> Measurement time



Measurement protocol

D =20sm®P




AB(I)

Experimental results

T, [us]
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Best result: Fexp = 3SQL 1010{,’10(\/FeXp / Fso, )z 2,4 dB



