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Outline of the lectures
These three lectures will focus on recent developments in quantum 
metrology.  The main questions to be answered are:  
(i) What are the ultimate precision limits in the estimation of 
parameters, according to classical mechanics and quantum mechanics? 
(ii) Are there fundamental limits? Is quantum mechanics helpful in 
reaching better precision?  
(iii) How to cope with the deleterious effects of noise? 

Our discussion is restricted to local quantum metrology: in this case, one 
is not interested in an optimal globally-valid estimation strategy, valid 
for any value of the parameter to be estimated, but one wants instead 
to estimate a parameter confined to some small range. The techniques to 
be developed are useful, for instance, for estimating parameters that 
undergo small changes around a known value, like sensing phase changes 
in gravitational-wave detectors or yet very small forces or magnetic 
fields — These are typical quantum sensing problems



Summary of the lectures
The lectures will be organized as follows: 

LECTURE 1. Examples of metrological tasks. Quantum metrology and optical 
interferometers. Shot-noise and Heisenberg limits. Radiation pressure in 
gravitational-wave interferometers. Classical bounds on precision: The Cramér-
Rao bound and introduction of the Fisher information. 

LECTURE 2. Extension of Cramér-Rao bound and Fisher information to quantum 
mechanics. Quantum Fisher information for noiseless systems. The role of 
entanglement. Application to atomic interferometry. Beyond the standard 
quantum limit: experimental results with optical interferometers and cavity QED. 

LECTURE 3. Noisy quantum-enhanced metrology: General framework for 
evaluating the ultimate precision limit in the estimation of parameters. Quantum 
channels. Application to optical interferometers. Quantum metrology and the 
energy-time uncertainty relation.  Application to atomic decay and dephasing. 

For more details, see Lectures at College de France (2016): 
http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5 

http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5


I.1 - General introduction: 
parameter estimation and 
classical limits on precision



Parameter estimation
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Enhanced sensitivity of the LIGO gravitational
wave detector by using squeezed states of light
The LIGO Scientific Collaboration*

Nearly a century after Einstein first predicted the existence of
gravitational waves, a global network of Earth-based gravita-
tional wave observatories1–4 is seeking to directly detect this
faint radiation using precision laser interferometry. Photon
shot noise, due to the quantum nature of light, imposes a
fundamental limit on the attometre-level sensitivity of the
kilometre-scale Michelson interferometers deployed for this
task. Here, we inject squeezed states to improve the perform-
ance of one of the detectors of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) beyond the quantum
noise limit, most notably in the frequency region down to
150 Hz, critically important for several astrophysical sources,
with no deterioration of performance observed at any
frequency. With the injection of squeezed states, this LIGO
detector demonstrated the best broadband sensitivity to
gravitational waves ever achieved, with important implic-
ations for observing the gravitational-wave Universe with
unprecedented sensitivity.

A fundamental limit to the sensitivity of a Michelson interferom-
eter with quasi-free mirrors comes from the quantum nature of
light, which reveals itself through two fundamental mechanisms:
photon counting noise (shot noise), arising from statistical fluctu-
ations in the arrival time of photons at the interferometer output,
and radiation pressure noise, which is the recoil of the mirrors
due to the radiation pressure arising from quantum fluctuations
in the photon flux. Both sources can be attributed to the quantum
fluctuations of the electromagnetic vacuum field, or vacuum fluctu-
ations, that enter the interferometer5,6.

An electromagnetic field can be described by two non-commut-
ing conjugate operators that are associated with field amplitudes that
oscillate out of phase with each other by 908, labelled as ‘in-phase’
and ‘quadrature phase’7. A coherent state of light (or vacuum, if
the coherent amplitude is zero) has equal uncertainty in both quad-
ratures, with the uncertainty product limited by the Heisenberg
uncertainty principle. For a squeezed state, the uncertainty in one
quadrature is decreased relative to that of the coherent state
(green box in Fig. 1). Note that the uncertainty in the orthogonal
quadrature is correspondingly increased, always satisfying the
Heisenberg inequality.

The vacuum fluctuations that limit the sensitivity of an interfero-
metric gravitational-wave detector enter through the antisymmetric
port of the interferometer, mix with the signal field produced at the
beamsplitter by a passing gravitational wave, and exit the antisym-
metric port to create noise on the output photodetector. Caves5,6

showed that replacing coherent vacuum fluctuations entering the
antisymmetric port with correctly phased squeezed vacuum states
decreases the ‘in-phase’ quadrature uncertainty, and thus the shot
noise, below the quantum limit. Soon after, the first experiments
showing squeezed light production through nonlinear optical
media achieved modest but important reductions in noise at high
frequencies8,9. However, squeezing in the audiofrequency region

relevant for gravitational-wave detection and control schemes for
locking the squeezed phase to that needed by the interferometer
were not demonstrated until the last decade10–12. Since then,
squeezed vacuum has been used to enhance the sensitivity of a pro-
totype interferometer13. The 600-m-long GEO600 detector14 has
deployed squeezing since 2010, achieving improved sensitivity at
700 Hz and above.

An important motivation for the experiment we present here
was to extend the frequency range down to 150 Hz while testing
squeezing at a noise level close to that required for Advanced
LIGO15. This lower frequency region is critically important for
the most promising astrophysical sources, such as coalescences
of black hole and neutron star binary systems, but also poses a
significant experimental challenge. Seismic motion is huge com-
pared to the desired sensitivity, albeit at very low frequencies of
less than !1 Hz, and LIGO employs a very high-performance
isolation system to attenuate the seismic motion by several
orders of magnitude. This uncovers a set of nonlinear couplings
that upconvert low-frequency noise into the gravitational wave
band. In the past, these processes have made it difficult for
gravitational-wave detectors to reach a shot-noise-limited
sensitivity in their most sensitive band near 150 Hz. Any
interactions between the interferometer and the outside world
have to be kept at an absolute minimum. For instance, randomly
scattered light reflecting back into the interferometer has to be
managed at the level of 1 × 10218 W. Past experience has shown
that measured sensitivities at higher frequencies are difficult to
extrapolate to lower frequencies2. For the first time, we employ
squeezing to obtain a sensitivity improvement at a gravitational-
wave observatory in the critical frequency band between 150 Hz
and 300 Hz. Similarly important, we observe that no additional
noise above background was added by our squeezed vacuum
source, firmly establishing this quantum technology as an
indispensable technique in the future of gravitational-
wave astronomy.

The experiment was carried out towards the end of 2011 on the
LIGO detector at Hanford, Washington, known as ‘H1’. The
optical layout of the detector is shown in Fig. 1. The interferometer
light source (‘H1 laser’) is a Nd:YAG laser (1,064 nm) stabilized
in frequency and intensity. A beamsplitter splits the light into
the two arms of the Michelson, and Fabry–Perot cavities
increase the phase sensitivity by bouncing the light !130 times
in each arm. The Michelson is operated on a dark fringe, so
most of the light is reflected from the interferometer back to the
laser. A partially transmitting mirror between the laser and
the beamsplitter forms the power-recycling cavity, which
increases the power incident on the beamsplitter by a factor of
40. To isolate them from terrestrial forces such as seismic
noise, the power recycling mirror, the beamsplitter and the arm
cavity mirrors are all suspended as pendula on vibration-
isolated platforms.

*A full list of authors and their affiliations appears at the end of the paper.
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tion from this motion leads to a fractional fre-
quency shift for the moving clock of (17)

df
f0

¼ 1
〈gð1 − v∥=cÞ〉

− 1 ð1Þ

Here v|| is the velocity of the Al+ ion along
the wave vector of the probe laser beam g ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
, c is the speed of light, v is the

ion’s velocity with respect to the laboratory ref-
erence frame, and f0 is the ion’s proper resonant
frequency. Angle brackets denote time averages.
Because the induced Al+ ion motion is harmonic,
its contribution to 〈v||〉 averages to zero; therefore,
any observed change in the ion’s transition fre-
quency is due to a change in g and corresponds to
relativistic time dilation (18). For v/c << 1, Eq. 1
can be approximated by df /f0 ≈ −〈v2〉/2c2 (17). We
measured the frequency difference between the
two clocks (df/f0) while varying the velocity of the
ion motion. The experimental results, which con-
firm the prediction of Eq. 1, are plotted in Fig. 2.

Differences in gravitational potential can be de-
tected by comparing the tick rate of two clocks. For
small height changes on the surface of Earth, a
clock that is higher by a distance ∆h runs faster by

df
f0

¼ g Dh
c2

ð2Þ

where g ≈ 9.80 m/s2 is the local acceleration due
to gravity (4). The gravitational shift corresponds
to a clock shift of about 1.1 × 10−16 per meter of
change in height. To observe this shift, we first
compared the frequencies of the two Al+ clocks at
the original height difference of ∆h = h (Mg-Al) −
h (Be-Al) = −17 cm, which was measured with a
laser level. Then we elevated the optical table on
which theMg-Al clock was mounted, supporting
it on platforms that increased the height by 33 cm,
and compared the frequencies again. The two mea-

surements consist of approximately 100,000 s of
low-height data and 40,000 s of high-height data,
and the clocks exhibit (Fig. 3) a fractional fre-
quency change of (4.1 T 1.6) × 10−17. When this
shift is interpreted as a measurement of the change
in height of the Al-Mg clock, the result of 37 T
15 cm agrees well with the known value of 33 cm.

Although ideally 〈v||〉 = 0, small linear veloc-
ities of the Al+ ions can occur because of effects
such as slow electrical charging of insulating ma-
terial in the trap. FromEq. 1, the clock’s frequency
(that is, the frequency of the probe laser locked to
the moving ion’s clock transition) exhibits a frac-
tional frequency shift

df
f0

≈
〈v∥〉
c

ð3Þ

if the Al+ ion is moving at an average velocity 〈v||〉
in the propagation direction of a probe laser beam.
In the comparison measurements between the Al+

clocks, theDoppler effect was carefully constrained
by alternate use of probe laser beams counter-
propagating with respect to each other (11). Any
motion of the ion is detected as a difference in the
transition frequencies measured by the two laser
beams. In theAl-Mg clock,we observed a fractional
frequency difference of (1.2 T 0.7) × 10−17 be-
tween the two probe directions, which corresponds
to the ionmoving at a speed of (1.8 T 1.1) nm/s in
the lab frame. However, the clock rate is not sig-
nificantly affected by a velocity of this magnitude,
because it is derived from an average of the two
opposite laser-probe directions.

Small relativistic effects reported here have
been observed with optical atomic clocks of un-
precedented precision and accuracy. With im-
proved accuracy, the sensitivity of optical clocks
to small variations in gravitational potential might
find applications in geodesy (19, 20), hydrology
(21), and tests of fundamental physics in space

(22). The basic components for clock-based geo-
detic measurements were demonstrated here by
comparing two accurate Al+ optical clocks through
75 m of noise-canceled fiber and measuring
height-dependent clock shifts. In clock-based
geodesy (23, 24), accurate optical clocks would
be linked to form a network of “inland tide gauges”
(25) that measure the distance from Earth’s sur-
face to the geoid: the equipotential surface of
Earth’s gravity field that matches the global mean
sea level. Such a network could operate with high
temporal (daily) and geospatial resolution at the
clock locations. It would therefore complement
geodetic leveling networks, whose update period
is typically 10 years or longer, as well as biweekly
satellite-generated global geoid maps.

For a network to be useful, clock accuracy
must be improved to 10−18 or better (26–28) to
allow for height measurements with 1-cm uncer-
tainty. In Al+ clocks, improved control of the ion
motion is needed to reduce the uncertainty of
motional time dilation, and issues of reliability
must be addressed, so that the clocks can operate
unattended for long periods. High-quality links
are also needed to connect the optical clocks.
Realistic link demonstrations with telecommuni-
cations fiber akin to the links used in this work
have shown that optical frequencies can be trans-
mitted across fiber lengths of up to 250 km with
inaccuracy below 10−18 (29–31), and continent-
scale demonstrations are in progress (30). How-
ever, intercontinental links may require the faithful
transmission of optical carrier frequencies to sat-
ellites through the atmosphere, and this is an un-
solved problem under active investigation (32, 33).
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Fig. 3. Gravitational time dilation at the scale of daily life. (A) As one of the
clocks is raised, its rate increases when compared to the clock rate at deeper
gravitational potential. (B) The fractional difference in frequency between
two Al+ optical clocks at different heights. The Al-Mg clock was initially
17 cm lower in height than the Al-Be clock, and subsequently, starting at
data point 14, elevated by 33 cm. The net relative shift due to the increase in

height is measured to be (4.1 T 1.6) × 10−17. The vertical error bars rep-
resent statistical uncertainties (reduced c2 = 0.87). Green lines and yellow
shaded bands indicate, respectively, the averages and statistical uncertain-
ties for the first 13 data points (blue symbols) and the remaining 5 data
points (red symbols). Each data point represents about 8000 s of clock-
comparison data.
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One of the Fe-Cu dimers in Fig. 4B always
exhibits a larger T1 than the other. We speculate
that this variation is due to differences in the
nearby surface features as seen in the accompany-
ing topographs. This observation emphasizes the
capability of the all-electronic pump-probe tech-
nique presented here to resolve local variations in
the spin relaxation time with atomic precision.

The pump-probe scheme we have described
can be used to monitor the temporal evolution of
any excitation provided (i) the excitation can be
driven by tunneling electrons; (ii) the conduct-
ance of the tunnel junction exhibits a postexcita-
tion time dependence; and (iii) the system evolves
on an accessible time scale. Excitations fulfilling
these requirements include long-lived vibrational
excitations, conformational changes ofmolecules
(26) such as in molecular motors (27), or fast
localized heating (28). We emphasize that this
pump-probe scheme can in principle be used to
monitor the dynamical evolution of the excited
state, not just its relaxation; with sufficient tem-
poral resolution it should be possible to monitor
the vibration of an atom ormolecule and even the
precession of a spin.
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Optical Clocks and Relativity
C. W. Chou,* D. B. Hume, T. Rosenband, D. J. Wineland
Observers in relative motion or at different gravitational potentials measure disparate clock
rates. These predictions of relativity have previously been observed with atomic clocks at high
velocities and with large changes in elevation. We observed time dilation from relative speeds of
less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter
length of optical fiber. We can now also detect time dilation due to a change in height near
Earth’s surface of less than 1 meter. This technique may be extended to the field of geodesy, with
applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

Albert Einstein’s theory of relativity forced
us to alter our concepts of reality. One of
the more startling outcomes of the theory

is that we have to give up our notions of simul-

taneity. This is manifest in the so-called twin
paradox (1), inwhich a twin siblingwho travels on
a fast-moving rocket ship returns home younger
than the other twin. This “time dilation” can be

quantified by comparing the tick rates of identical
clocks that accompany the traveler and the sta-
tionary observer. Another consequence of Ein-
stein’s theory is that clocks run more slowly near
massive objects. In the range of speeds and
length scales encountered in our daily life,
relativistic effects are extremely small. For
example, if two identical clocks are separated
vertically by 1 km near the surface of Earth, the
higher clock emits about three more second-ticks
than the lower one in a million years. These
effects of relativistic time dilation have been
verified in several important experiments (2–6)
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Fig. 4. Field and site dependence of the spin relaxation time. (A) Pump-probe measurements for different magnetic fields on an Fe-Cu dimer; solid
lines are exponential fits. (B) T1 as a function of magnetic field for the two Fe-Cu dimers shown in the accompanying 5-nm by 5-nm STM topographs.
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One of the Fe-Cu dimers in Fig. 4B always
exhibits a larger T1 than the other. We speculate
that this variation is due to differences in the
nearby surface features as seen in the accompany-
ing topographs. This observation emphasizes the
capability of the all-electronic pump-probe tech-
nique presented here to resolve local variations in
the spin relaxation time with atomic precision.

The pump-probe scheme we have described
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any excitation provided (i) the excitation can be
driven by tunneling electrons; (ii) the conduct-
ance of the tunnel junction exhibits a postexcita-
tion time dependence; and (iii) the system evolves
on an accessible time scale. Excitations fulfilling
these requirements include long-lived vibrational
excitations, conformational changes ofmolecules
(26) such as in molecular motors (27), or fast
localized heating (28). We emphasize that this
pump-probe scheme can in principle be used to
monitor the dynamical evolution of the excited
state, not just its relaxation; with sufficient tem-
poral resolution it should be possible to monitor
the vibration of an atom ormolecule and even the
precession of a spin.
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taneity. This is manifest in the so-called twin
paradox (1), inwhich a twin siblingwho travels on
a fast-moving rocket ship returns home younger
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quantified by comparing the tick rates of identical
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Fig. 4. Field and site dependence of the spin relaxation time. (A) Pump-probe measurements for different magnetic fields on an Fe-Cu dimer; solid
lines are exponential fits. (B) T1 as a function of magnetic field for the two Fe-Cu dimers shown in the accompanying 5-nm by 5-nm STM topographs.
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Experiments: Parameter estimation beyond 
classical physics in the XXI century

Phase resolution



Atomic clocks
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Magnetometers

Experiments: Parameter estimation beyond 
classical physics in the XXI century



Force, displacement, and tilt
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Parameter estimation and uncertainty relations
What is the meaning of 

★Time-energy uncertainty relation?

 ΔEΔT ≥ ! / 2

★ Number-phase uncertainty relation?

 ΔNΔφ ≥ ! / 2
We shall see that quantum parameter estimation allows to understand 
these relations in terms of uncertainties in the estimation of parameters: 
while Heisenberg uncertainty relations are associated with Hermitian 
operators, the theory of parameter estimation allows one to obtain 
uncertainty relations for parameters, like time or phase, with no need to 
associate them to suitable Hermitian operators.



Photons and beam splitters I

a
b

a
aout
bout

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= r t

t r

⎛

⎝
⎜

⎞

⎠
⎟

ain
bin

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

b

in

in

out

out

aout
2
+ bout

2
= ain

2
+ bin

2
⇒

r
2
+ t

2
=1,	rt ∗+r∗t =0

Balanced interferometer: 

r = 1
2
,	t = i

2
aout
bout

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=
1
2

1 i
i 1

⎛

⎝
⎜

⎞

⎠
⎟
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bin

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟



Photons and beam splitters II

a
b

a

b

in

in

out

out

Same for operators:

EXERCISE 1: Show that this 
transformation preserves number of 
photons and commutation relations

Corresponding evolution operator:

Û =exp −
iπ
4 âb̂†+ â†b̂( )

⎡

⎣
⎢

⎤

⎦
⎥⇒

âin ,âin†⎡
⎣

⎤
⎦=1,	 b̂in ,b̂in†⎡

⎣
⎤
⎦=1,		 âin ,b̂in†⎡

⎣
⎤
⎦=0,	 âin ,b̂in⎡

⎣
⎤
⎦=0

Û†âinÛ =
1
2
âin + ib̂in( )= âout

Û†b̂inÛ =
1
2
iâin + b̂in( )= b̂out

EXERCISE 2: 
Show this.

Heisenberg picture!

âout
b̂out

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=
1
2

1 i
i 1

⎛

⎝
⎜

⎞

⎠
⎟

âin
b̂in

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟



Mach-Zender interferometer: a beam  with complex amplitude ain is split on 
a balanced beam splitter BS1  and the two resulting beams acquire phases     
and     , interfering on the second beam splitter BS2. The photon numbers  
         and        are measured at the output ports.  One could also have two 
incident beams, with complex amplitudes ain and bin. 

An example: optical interferometry
'1

'2

a

b

'1

'2

The outgoing fields are related to the incoming ones through the 
transformation (note that aout=ain, bout=bin when     =     =0, since 
[BS1]X[BS2]=1) :

BS1 BS2

aout
bout

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

1
2

1 i
i 1

⎛

⎝
⎜

⎞

⎠
⎟

! "## $##

eiϕ1 0
0 eiϕ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
1
2

1 −i
−i 1

⎛

⎝
⎜

⎞

⎠
⎟

! "## $##

ain
bin

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

BS1BS2

'1 '2

in

in

outa

bout

'est

naout nbout

 BS1 × BS2 = 1



Optical interferometry (2)

Multiplying the matrices, and replacing the complex amplitudes by the 
corresponding photon annihilation operators, one gets:

âout
b̂out

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= ei ϕ1+ϕ2( )/2 cos ϕ / 2( ) −sin ϕ / 2( )

sin ϕ / 2( ) cos ϕ / 2( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

âin
b̂in

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,

where the operator â annihilates photons in mode a: â|Ni =
p
N |N � 1i

and       is the Fock state with N photons, with                          , where |Ni â†â|Ni = N |Ni
is the number operator. The overall phase above can be neglected.â†â

We use now the Jordan-Schwinger transformation, which allows to analyze 
the Mach-Zender interferometer in terms of the algebra of angular 
momentum operators.

ϕ =ϕ2 −ϕ1,

'1

'2

BS1 BS2
'est

̂ain

b̂in

̂aout

b̂out



Optical interferometry and Jordan-Schwinger transformation

This has the advantage of providing a unified formalism, which can also be 
applied to problems in atomic spectroscopy and magnetometry.

Let Ĵx =
1

2
(â†b̂+ b̂†â), Ĵy =

i

2
(b̂†â� â†b̂), Ĵz =

1

2
(â†â� b̂†b̂)

Then [Ĵi, Ĵj ] = i✏ijkĴk and Ĵ2 =
N̂

2

 
N̂

2
+ 1

!
, N̂ = â†â+ b̂†b̂

Transformations of operators   and   can be considered as rotations in angular 
momentum  space:  , with  , where                                   
the                        

̂a b̂
̂aou t = Û† ̂ainÛ, b̂ou t = Û†b̂inÛ Û = exp( − iθ ̂J ⋅ n̂)

unit vector   is along the axis of rotation, with the correspondence:n̂
BS1

BS2

Phase delay! Û = exp(�i⇡Ĵx/2)

! Û = exp(i⇡Ĵx/2)

! Û = exp(�i�Ĵz)

so these operators obey the angular momentum algebra.

φ =ϕ2 −ϕ1

EXERCISE 3: 
Show this.



Angular momentum operators for optical 
interferometry

Corresponding transformation for the operators     (Heisenberg picture!): Ĵi

Ĵ x
out

Ĵ y
out

Ĵz
out

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1 0 0
0 0 1
0 −1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosϕ −sinϕ 0
sinϕ cosϕ 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0
0 0 −1
0 1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Ĵ x
in

Ĵ y
in

Ĵz
in

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

cosϕ 0 sinϕ
0 1 0

−sinϕ 0 cosϕ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Ĵ x
in

Ĵ y
in

Ĵz
in

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Therefore, Mach-Zender 
transformation amounts to a 
rotation around y axis of the 
angular momentum operators.

The state transforms as ψ
out
= eiĴxπ /2e−iĴzϕe−iĴxπ /2 ψ

in

EXERCISE 4: 
Show this.



Precision of phase estimation
From                             , it is clear that                       . n̂a � n̂b = 2ĴzĴz =

1

2
(â†â� b̂†b̂)

On the other hand, the average of     in the output state is equal to the 
average of      , given by the previous matrix expression, in the input state.

Ĵz

Therefore,                                                       ,  while the variance ishĴziout = cos'hĴziin � sin'hĴxiin

where the covariance cov is defined as

cov(Ĵx, Ĵz) =
1
2 hĴxĴz + ĴzĴxi � hĴxihĴzi

The precision of estimation can now be quantified by the error propagation 
formula:

where                      is a standard deviation (same for      ).

�2Ĵz
���
out

= cos2 ' �2Ĵz
���
in
+ sin2 ' �2Ĵx

���
in
� 2 sin' cos' cov(Ĵx, Ĵz)

���
in

�' =
p

�2' �Ĵz

�' =
�Ĵz

���
out���dhĴziout

d'

���

Ĵout
z

EXERCISE 5: 
Show this.

Phase is estimated from the 
difference in photon numbers 
at the two output doors



From                                                   and                                                     

Optical interferometry with Fock states

hĴziout = cos'hĴziin � sin'hĴxiin

        Consider that a Fock state      is injected in port a, so that 

and                         .cov(Ĵx, Ĵz)in = 0

one gets

|Ni
| iin = |Nia|0ib . Since

which is the standard (or shot-noise limit) for optical interferometry.

this initial state is an eingestate of     and     :                                 ,

Ĵx =
1

2
(â†b̂+ b̂†â), Ĵy =

i

2
(b̂†â� â†b̂), Ĵz =

1

2
(â†â� b̂†b̂)

�2Ĵz
���
out

= cos2 ' �2Ĵz
���
in
+ sin2 ' �2Ĵx

���
in
� 2 sin' cos' cov(Ĵx, Ĵz)

���
in

hĴziin = N/2, hĴxiin = 0, �2Ĵz
���
in
= 0 , �2Ĵx

���
in
= N/4,

Ĵz Ĵ2 Ĵz|N, 0i = (N/2)|N, 0i
, so we may write                     .  Also,|N, 0i ! |j, ji

�' =
�Ĵz

���
out���dhĴziout

d'

���
=

p
N | sin'|/2
N | sin'|/2 =

1p
N

,

Ĵ2|N, 0i = N
2

�
N
2 + 1

�
|N, 0i

EXERCISE 6: 
Show this.

̂J 2 = (N̂/2)(N̂/2 + 1)



Geometrical interpretation

(a) Initial state

Length of side of the cone:  
               , with j=N/2
Distance from apex to center of 
base: eigenvalue of     —> j=N/2Ĵz
Radius of the base of the cone:p

j(j + 1)� j2 =
p
j

(b) Action of first beam splitter
(c) Phase delay

(d) Action of second beam splitter
Minimum detectable    is of the 
order of 

'

'
�'

�⇡/2

⇡/2

z z

z z

x x

x x

y y

y y

p
j

j

p
j(j + 1)

p
j(j + 1)

'min

'min ⇡
p
j

j
=

1p
j
⇡ 1p

N



with                   ,

it follows that the corresponding 
standard deviations in the state      
are                             , and the

Optical interferometry with coherent states
Consider now that a coherent state      is injected in port a, so that |↵i
| iin = |↵ia|0ib
Just to fix the notation (and also as a reminder…), a coherent state 

|↵i

is an eigenstate of the operator â,                   , and the average number 
of photons in the state is                                                                        

â|↵i = ↵|↵i
h↵|N̂ |↵i = h↵|â†â|↵i = |↵|2.

Defining the quadrature operators as

coherent state is a minimum 
uncertainty state:

�p✓ = �q✓ = 1/
p
2

�p✓�q✓ = 1/2

�
�q = 1/

p
2

↵ = |↵| exp(i�)
Phase quadrature

Amplitude 
quadrature

q

p

q̂✓ =
1p
2

�
âe�i✓ + â†ei✓

�
, p̂✓ = q̂✓+⇡/2 =

�ip
2

�
âe�i✓ � â†ei✓

�
, [q̂✓, p̂✓] = i



From                                                     and                                                     

Optical interferometry with coherent states (2)

hĴziout = cos'hĴziin � sin'hĴxiin

| iin = |↵ia|0ibFor the initial state                         , one has      
hĴziin = 1

2 |↵|
2 hĴxiin = 0                   ,                ,                                          , and                         .                           cov(Ĵx, Ĵz)in = 0

one gets

The precision now depends on the operating point. The optimal operating 
points are at              or               .     ' = ⇡/2

These two points correspond to the maximum speed of variation of            
with   , implying higher sensitivity of            to changes in this parameter.      

' = 3⇡/2

hĴziout
'

Bound depends on 
incoming state and on 
the operating point!

�2Ĵz
���
out

= cos2 ' �2Ĵz
���
in
+ sin2 ' �2Ĵx

���
in
� 2 sin' cos' cov(Ĵx, Ĵz)

���
in

�2Ĵz
���
in
= �2Ĵx

���
in
= |↵|2/4

hĴziout

hJziout

'

maximum speed

�' =
�Ĵz

���
out���dhĴziout

d'

���
=

|↵|/2
|↵|2| sin'|/2 =

1

|↵ sin'| =
1p

hNi| sin'|

EXERCISE 7: 
Show this.



Reminder on squeezed states

Important question: Can we do better, going beyond the shot-noise bound?  This 
can actually be achieved, by using special quantum features of the incoming state.

A squeezed state is a minimum-uncertainty state, 
obtained from a coherent state by a scaling 
transformation, which consists in squeezing a 
quadrature and stretching the orthogonal one. 
More formally, it is obtained from a coherent 
state through the transformation

where                     is an arbitrary complex number.⇠ = r exp(i✓)

Interferometry with coherent + squeezed states

For metrology, the squeezed vacuum states are more relevant:                     .|⇠i = Ŝ(⇠)|0i

The average number of photons in state     is                      : a squeezed 
vacuum state has an average number of photons different from zero.

|⇠i hN̂i = sinh2 r

For          real (         ), the uncertainties in q and p are:⇠ = r

Δq = e−r / 2,  Δp = er / 2

|↵, ⇠i = Ŝ(⇠)|↵i, Ŝ(⇠) = exp
⇥�
⇠⇤â2 � ⇠â†2

�
/2
⇤

✓/2

1p
2
e�r

1p
2
er

�x

�p

p

q

✓ = 0

SQUEEZED VACUUM



Assuming for simplicity that          is real (this fixes a direction in phase 
space), one has:

Interferometry with coherent + squeezed states (2)
Assume now that a coherent state is injected into one of the ports of a 
Mach-Zender interferometer, and a vacuum squeezed state into the other 
port. The initial state is then             .  This scheme was proposed by 
Caves in 1981, and is implemented in gravitational-wave interferometers 
(LIGO, GEO600).

|↵i ⌦ |⇠i

⇠ = r

hN̂i = |↵|2 + sinh2 r, hĴziin = (|↵|2 � sinh2 r)/2, h ~Jxiin = 0, col(Ĵx, Ĵz)
���
in
= 0,

�2 ~Jz
���
in
=

⇥
|↵|2 + (1/2) sinh2 2r

⇤
/4, �2 ~Jx

���
in
=

⇥
|↵|2 cosh 2r � Re(↵2) sinh 2r + sinh2 r

⇤
/4 .

Replacing these into the previous expressions for           and             ,hĴziout �2Ĵz
���
outand choosing    real, so as to minimize              (this 

means that the coherent state is along the direction 
of highest compression): 

�2Ĵx
���
in

↵

�' =
p

cot2 '(|↵|2+ 1
2 sinh2 r)+|↵|2e�2r+sinh2 r

||↵|2�sinh2 r|

This term reduces variance

q

p

EXERCISE 8: 
Show this.

cov



Interferometry with coherent + squeezed states (3)

�' =
p

cot2 '(|↵|2+ 1
2 sinh2 r)+|↵|2e�2r+sinh2 r

||↵|2�sinh2 r|

Optimal operation points: cot' = 0 ) ' = ⇡/2, 3⇡/2.

Then:

Consider             , with the squeezed vacuum carrying approximately                                                                     hN̂i � 1q
hN̂i/2              photons. Then the majority of photons belong 

to the coherent state, and                                            , 
so that 

sinh2 r ⇡ (1/4)e2r ⇡
q
hN̂i/2

lim
hNi!1

�' ⇡

q
hNi/(2

p
N) +

p
hNi/2

hNi �
p

hNi/2
⇡ 1

hNi3/4
,

implying that this scheme leads to precision better than shot noise, for the 
same amount of resources — in this case, the average photon number      . hNi

�' =
p

|↵|2e�2r+sinh2 r

||↵|2�sinh2 r|

q

p

//

We now try to minimize the expression:



e → e + i g( ) / 2
e ≡ 1

0

⎛

⎝
⎜

⎞

⎠
⎟

e−iSzϕ /2eiSxπ /2

→ e → e + ieiϕ g( ) / 2

eiSxπ /2

→− e sin ϕ / 2( )
   + g cos ϕ / 2( )

+ϕ / 2

−ϕ / 2

| iout = eiĴx⇡/2e�iĴz'eiĴx⇡/2| iin

hJzi = 2(Pg � Pe) = cos�

' = �!t

Unified formalism for interferometers
Ramsey interferometry N independent atoms: Uncertaintiy 

in the phase scales as 1/ N



Getting better precision: Squeezed atomic states
It is also possible to prepare squeezed atomic states, which lead to a 1/N 
scaling. Starting with atoms in a ground state, squeezed atomic states are 
obtained through the transformation

| ⇠i = exp[(�⇠/2)(J2
+ � J2

�)]|gi⌦N , ⇠ real

which is analogous to the corresponding transformation for electromagnetic 
fields. The successive transformations, applied on the collective angular 
momentum, are essentially the same as before — the squeezing reduces the final 
variance of    , thus increasing the precision in the estimation of the phase.     

J. Ma, X. Wang, C. P. Sun, and F. Nori, arXiv:1011.2978 [quant-ph]. 

Jz



High-precision interferometry: Advanced LIGO

Differential 
displacement 

sensitivity 
! 10−19m

Relative 
change in 
distance 

! 3×10−23

Hanford, Washington

Livingston, Louisiana
Up to 2.15 dB improvement in sensitivity 
in the shot-noise- limited frequency band  



Gravitational-wave interferometer
Metric tensor   in general relativity (linearized):  g μν g μν = ημν + h μν
 Flat Minkowski spaceημν →
 Small perturbation representing the gravitational waveh μν →

Strain amplitude:   
for binary black hole system (r=distance to observer)

h ≈8GMR2ω2
orb/rc4 ∼10− 21 − 10− 23

 Differential change in the lengths of the armsΔL = |ΔLx − ΔLy | →

Physically, h is a strain: DL/L

worb

R
M



Gravitational-wave interferometer
S

tra
in

 !(1
0−2

1 )



Quantum standard limit in a 
gravitational interferometer

M ≫ m

Aim: to measure  z ≡z2 − z1

Intensity   phase difference   between light in the two arms → δΦ

δΦ = 2bωz /c ⇒ z = (c/2bω)δΦ
b—> number of reflections at each end mirror

Photon-counting error in z: 

(Δz)pc = (c/2bω)Δ(δΦ) ∼(c/2bω)N − 1/2

(b = 2)

|α,0⟩
Minimum measuring time: 
 , where   is the 
frequency of the gravitational 
wave. For   Hz,   
seconds   km

τ ∼2bℓ/c ∼1/f f

f = 100 τ ∼0.01
⇒ bℓ ∼1500

C. M. Caves, PRL 45, 75 (1980)



Quantum standard limit in a 
gravitational interferometer

M ≫ m

(b = 2)

Difference in the momenta transferred to the end masses: 

.̂ = (2ℏωb/c)( ̂a† ̂a − b̂†b̂)out

|α,0⟩
Averages in state  :|α,0⟩

⟨.̂⟩ = 0
⟨.̂2⟩ = (2ℏωb/c)2 |α |2

Radiation pressure

âout =
1
2
âin + ib̂in( )

b̂out =
1
2
iâin + b̂in( )

But: ⇒ .̂ = i(2ℏωb/c)( ̂a†b̂ − b̂† ̂a)in

Δ. = ⟨.̂2⟩1/2 = (2ℏωb/c)N1/2

⇒ (Δz)rp ∼(Δ.)τ/2m = (ℏωb/c)(τ/m)N1/2  measuring timeτ →

.̂2 = (2ℏωb/c2)( ̂a† ̂ab̂b̂† + ̂a ̂a†b̂†b̂
− ̂a†2b̂2 − b̂†2 ̂a2)in

̂a
b̂



Quantum standard limit in a 
gravitational interferometer

Radiation pressure

(Δz)rp ∼(Δ.)τ/2m = (ℏωb/c)(τ/m)N1/2 = (b/mc)(ℏωPτ3)1/2 ∼(b/mc)(ℏωP/f3)1/2

(Δz)pc = (c/2bω)Δ(δΦ) ∼(c/2bω)N − 1/2 = (c/2b)(ℏ/Pωτ)1/2 ∼(c/2b)(ℏf /Pω)1/2
Photon-counting 

Total uncertainty: Δz = [(Δz)2
pc + (Δz)2

rp]
1/2

where N was expressed in terms of the power  , and   was 
replaced by  , with   being the frequency of the gravitational wave.

P = Nℏω/τ τ
1/f f More important for 

low frequencies



Quantum standard limit in a 
gravitational interferometer

laser 180 750

Increase in optical path 
length: about 300

Physically, h is a strain: DL/L



General estimation theory
We have shown that it is possible to win over the shot noise in optical 
interferometry, by using states with specific quantum features, like 
states with well-defined number of photons or squeezed states. In these 
examples, the estimation was obtained through measurement of the 
difference of photon numbers in the outgoing arms of the interferometer. 
It is not clear whether these are the best possible measurements, or 
whether better bounds can be obtained by using other incoming states.

One may ask whether it is possible to find general bounds and 
strategies for reaching them, which could be applied to many different 
systems, and could eventually help us to identify which are the best 
states and the best measurements for achieving the best possible 
precision.

This is the aim of this series of lectures: to develop, and apply to 
examples, a general estimation theory, capable not only to consider 
unitary evolutions of closed systems, like the one described here for 
the optical interferometer, but also open (noisy) systems.



General estimation theory

1. What are the best possible measurements? 

2. What are the best incoming states, in order to get better 
precision? 

3. Is it possible to find general bounds and strategies for 
reaching them, which could be applied to many different systems?


