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Outline of the lectures

These three lectures will focus on recent developments in quantum
metrology. The main questions to be answered are:

(i) What are the ultimate precision limits in the estimation of
parameters, according to classical mechanics and quantum mechanics?
(i1) Are there fundamental limits? Is quantum mechanics helpful in
reaching better precision?

(iii) How to cope with the deleterious effects of noise?

Our discussion is restricted to local quantum metrology: in this case, one
is not interested in an optimal globally-valid estimation strategy, valid
for any value of the parameter to be estimated, but one wants instead
to estimate a parameter confined to some small range. The techniques to
be developed are useful, for instance, for estimating parameters that
undergo small changes around a known value, like sensing phase changes
in gravitational-wave detectors or yet very small forces or magnetic
fields — These are typical quantum sensing problems



Summary of the lectures

The lectures will be organized as follows:

LECTURE 1. Examples of metrological tasks. Quantum metrology and optical
inferferometers. Shot-noise and Heisenberg limits. Radiation pressure in
gravitational-wave interferometers. Classical bounds on precision: The Cramér-
Rao bound and introduction of the Fisher information.

LECTURE 2. Extension of Cramér-Rao bound and Fisher information to quantum
mechanics. Quantum Fisher information for noiseless systems. The role of
entanglement. Application to atomic interferometry. Beyond the standard
quantum limit: experimental results with optical intferferometers and cavity QED.

LECTURE 3. Noisy quantum-enhanced metrology: General framework for
evaluating the ultimate precision limit in the estimation of parameters. Quantum
channels. Application to optical interferometers. Quantum metrology and the
energy-time uncertainty relation. Application to atomic decay and dephasing.

For more details, see Lectures at College de France (2016):
http://www.if .ufrj.br/~ldavid/eng/show arquivos.php?Id=5



http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5

I.1- General introduction:
parameter estimation and
classical limits on precision



Parameter estimation
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Experiments: Parameter estimation beyond
classical physics in the XXI century
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Experiments: Parameter estimation beyond
classical physics in the XXI century
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Experiments: Parameter estimation beyond
classical physics in the XXTI centur
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Experiments: Parameter estimation beyond
classical physics in the XXI century
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Parameter estimation and uncertainty relations

What is the meaning of

% Time-energy uncertainty relation?

AEAT 21 /2

% Number-phase uncertainty relation?

ANAG > 1 /2

We shall see that quantum parameter estimation allows to understand
these relations in ferms of uncertainties in the estimation of parameters:
while Heisenberg uncertainty relations are associated with Hermitian
operators, the theory of parameter estimation allows one to obtain
uncertainty relations for parameters, like time or phase, with no need to
associate them to suitable Hermitian operators.
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\

ut

a
0

out /

2 2

|

r t
t r

1

\ 1

)’/ Clh1 \
\b""/

2 2 2 2
+‘b ‘ =‘a.‘ +‘b.‘ =
out In In

‘r‘ +‘t‘ =1, rt"+rt=0

i In

1 )| b




Corresponding evolution opemTor:

A

U =

Heisenberg picture!

exp| -

17T
4

Photons and beam splitters IT

“lab'+ 13)-

Same for operators:

EXERCISE 1: Show that this
transformation preserves number of
photons and commutation relations

EXERCISE 2:

Show this.




An example: optical interferometry

Lin i

Mach-Zender interferometer: a beam with complex amplitude ain is split on
a balanced beam splitter BS: and the two resulting beams acquire phases ¥1
and ¥2, interfering on the second beam splitter BSz. The photon numbers
n,.and n, are measured at the output ports. One could also have two
incident beams, with complex amplitudes ain and bin.

The outgoing fields are related to the incoming ones through the
transformation (note that acut=ain, bout=bin when ¢¥1 =¥2 =0, since
[BS1]X[BS:]=1) :

(L) Y \ N\ a,
out _ L 1 l € O L 1 —1 in BSI XBSz —1
b \/5 i1 0 e’ /\/5 -1 1 \ bin )

\ o |
BS> BSq




Optical interferometry (2)

~ A

Ain s ([ ] e — out
%é: BS; BS;,
b . 7 A

1n

out

Multiplying the matrices, and replacing the complex amplitudes by the
corresponding photon annihilation operators, one gets:

/ \ / cos(¢/2) —sin(g/2) V&

out _ ei((p1+(p2)/2 Am (p = @2 — qgl ,
sin(p/2) cos(@p/2 D,

\ out ) \ (qﬁ ) (QD ) / \ in /

where the operator & annihilates photons in mode a: a|N) = vV N|N — 1)

and |N)is the Fock state with N photons, with a'a|N) = N|N), where

a'a is the number operator. The overall phase above can be neglected.

We use now the Jordan-Schwinger transformation, which allows to analyze

the Mach-Zender interferometer in terms of the algebra of angular

momentum operators.

Q>

>




Optical interferometry and Jordan-Schwinger transformation

PHYSICAL REVIEW A VOLUME 33, NUMBER 6 JUNE 1986

SU(2) and SU(1,1) interferometers

Bernard Yurke, Samuel L. McCall, and John R. Klauder
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 30 October 1985)

This has the advantage of providing a unified formalism, which can also be
applied to problems in atomic spectroscopy and magnetometry.

Then [JZ,JJ] — Zéijkjk and J2 - ? (2 + 1) ; N =
EXERCISE 3:
so these operators obey the angular momentum algebra. Show this.

Transformations of operators d and b can be considered as rotations in angular

VaN A\

momentum space: 4, = U'a, U, b, = lA]TlgmlA], with U = exp(—i6J - i), where

out —

the unit vector 71 is along the axis of rotation, with the correspondence:
BS1— U = exp(—mfx/Q) Phase delay — U = exp(—iqﬁfz)
BS, — U = exp(imJ,/2) ¢=@, -



Angular momentum operators for optical
interferometry

Corresponding transformation for the operators Ji (Heisenberg picture!):

( )

)

I / I 0 O \( cosp -singp 0 \( 1 0 O ) J)’;”
J =l 0 0 1 sinpg cosep O 0 0 -1 J)
jzout \O -1 O )\ 0 0 1/\ 0O 1 O | j;"
\ / / \ \ /
( - \[ ™
cosg 0 sing {x Therefore, Mach-Zender
= 0 10 Jy transformation amounts o a
_ . () Ain . N
exErcisE 4 [ SIn @ COS @ | g rotation around y axis of the
Show this. \ / angular momentum operators.

The state transforms as




Precision of phase estimation

.1 N i
From J, = 5(aﬁ 6 — b'h), it is clear that 7, — 7y, = 2.J...

On the other hand, the average of J. in the output state is equal to the
average of J2', given by the previous matrix expression, in the input state.

Therefore, | (J.)out = cos o(J.)in — sin p(J,)in | while the variance is

| +sin290 A2J  —2smmpcosp COV(jxajz) .

11 11

EXERCISE 5:

Show this.

formula: Phase is estimated from the
difference in photon numbers
at the two output doors

where Ay = /A2 is a standard deviation (same forA.J.).



Optical interferometry with Fock states

Consider that a Fock state |N)is injected in port a, so that
¥)in = |N)al0)s | . Since
J. = =(a'b+bTa), J,==(bTa—a'b), J,= %(eﬁa —b'b) J? = (N/2)(WN/2 + 1)
J2| N, 0> = (N/2)!N,0>,
.| Also,

EXERCISE 6.
Show this.

From (J.)ous = cos ©(J)in — sin %m and

2 _ 2 _
A2, = cos 909% in+sm 0 A2%J, - 2 sin  cos @ COV(J J)m
ohe gets
Aoy — AJ. out  VN|sing|/2 1
v ’d<%>0ut " Nlsingl/2 VN’
©

which is the standard (or shot-noise limit) for optical interferometry.



Geometrical interpretation
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Optical interferometry with coherent states

Consider now that a coherent state |a) is injected in port a, so that
P)in = |)a|0)s

Just to fix the notation (and also as a reminder...), a coherent state

is an eigenstate of the operator @, a|a) = a|a), and the average number
of photons in the state is (a|N|a) = (alafala) = |a?.

Defining the quadrature operators as

1 y | — | |
A A —1 ~T 10 A oA _ ~ _—10 ~T 10 . Ao~
qo = —= |ae€ Tae’),Ps=dqo+r/2 = —= (ae€ —a'e” ) ,with [gg, po] = 1,

. . Ap Ampli’rude

it follows that the corresponding Phase quadrature quadrature

standard deviations in the state |a) | o = |a|exp(i¢) NN

are Apg = Agp = 1/V'2, and the

coherent state is a minimum NG|

uncertainty state: ApgAgg = 1/2 A= L |
................. Ag = 1/v/2 |

| b 4

.

OV

Real field



Optical interferometry with coherent states (2)

For the initial state|¥)in = |a@)4|0)s , one has
<j2>in = l|C“|2, <jw>in =0, A2J = A2J . ’&’2/4, and COV(ja:a jz)in = 0.

2
1n

From <jz>out — COs gp<jz>in — sin p{J7)in and SalENata

Show this.

A

A% J, = cos? o A%J,| +sin?¢ A%J,| —2singcosy cov(Je )
out in in g in
ne gets A AJZ out a‘/z 1 1
0 = — = . = =
9 1 |d<z]dz>out af?|sinp|/2  |asing| | /(N)|sin ]
<Jz>out L

Bound depends on

incoming state and on
'maximum speed the operating point!

2n -3n/2 -m -n/2 O n/2 n 3n/2 2n

270 180 180 Yyl

The precision now depends on the operating point. The optimal operating
points are at ¢ = 7/2or ¢ = 37/2, )
These two points correspond to the maximum speed of variation of (J)out
with ©, implying higher sensitivity of (J.)ou To changes in this parameter.



Interferometry with coherent + squeezed states

Important question: Can we do better, going beyond the shot-noise bound? This

can actually be achieved, by using special quantum features of the incoming state.
SQUEEZED VACUUM

Reminder on squeezed states

A squeezed state is a minimum-uncertainty state,
obtained from a coherent state by a scaling
transformation, which consists in squeezing a
quadrature and stretching the orthogonal one. |
More formally, it is obtained from a coherent Ap -
state through the transformation

§) = exp |(£*a”

where £ = rexp(¢0) is an arbitrary complex number.

For £ =7 real (§ = 0), the uncertainties in g and p are: le—— Az >~

Aq=e'r/\/§,Ap=er/\/§ .
For metrology, the squeezed vacuum states are more relevant:||§) = S(£)[0).

The average number of photons in state €)is (N ) = sinh? r: a squeezed
vacuum state has an average number of photons different from zero.




Interferometry with coherent + squeezed states (2)

Assume now that a coherent state is injected into one of the ports of a
Mach-Zender interferometer, and a vacuum squeezed state into the other
port. The initial state is ’rhen This scheme was proposed by
Caves in 1981, and is implemented in gravitational-wave interferometers
(LIGO, GEO600).

Assuming for simplicity that { = 7 is real (this fixes a direction in phase
space), one has:
Show this.

(N = |a|? +sinh? 7, (J,)in = (Ja|? — sinh?®7) /2, (J)in = 0,cov(J,, J,)| =0,

|a|? cosh 27 — Re(a”) sinh 2r + sinh? r| /4.

in },

This term reduces variance )
Replacing these into the previous expressions for (J.)out and AZJ,

and choosing « real, so as to minimize AQJLU‘. (this
means that the coherent state is along the direction
of highest compression):

Ap — \/C0t2 ¢(]a|?24 3 sinh? ’r)—|—|a|26—2"“—|—sinh2\r .
= la]2—sinh? 7| \

A?J,| = [la|® + (1/2)sinh® 2r] /4, A2,

11

’
out

Qv




Interferometry with coherent + squeezed states (3)

We now try to minimize the expression:

cot? al24+ 1 sinh? r)4+|al2e—274sinh? r
Ay — Ve el o

2
||a|2 —sinh? 7|

Optimal operation points: cot o = 0= ¢ = 7/2, 37/2.
Then: A N \/‘a|2€—2’r'_|_sinh2 r
¥ = T laP—sinhZr

Consider (N) > 1, with the squeezed vacuum carrying approximately

\/(N)/2 photons. Then the majority of photons belong 4p
to the coherent state, and sinh?r ~ (1/4)e?" a1/ (N)/2,
so that
. \/<N>/(2\/N)+\/<N>/2 |
lim Ayp ~ ~ | / ‘_’
(N)—00 (N) — /<N>/2 <N>3/4 g

implying that this scheme leads to precision better than shot noise, for the
same amount of resources — in this case, the average photon number (V).



Unified formalism for interferometers

Ramsey interferometry N independent atoms: Uncertaintiy
in the phase scales as 1/\N

Initial leJ'L’/Z

T |1

B 1) -14)

o>

IM+10E
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Getting better precision: Squeezed atomic states

It is also possible to prepare squeezed atomic states, which lead to a 1/N
scaling. Starting with atoms in a ground state, squeezed atomic states are
obtained through the transformation

vhe) = expl(=¢/2)(J3 = JZ2)]lg) =", Ereal
which is analogous to the corresponding transformation for electromagnetic
fields. The successive transformations, applied on the collective angular
momentum, are essentially the same as before — the squeezing reduces the final
variance of J,, thus increasing the precision in the estimation of the phase.

- ; e ' » z,:‘ — '
7 \ 7/ d | Yy (7 Y
/2 pulse Free evolution: T /2 pulse

J. Ma, X. Wang, C. P. Sun, and F. Nori, arXiv:1011.2978 [quant-ph].



High-precision interferometry: Advanced LIGO
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Gravitational-wave interferometer

Metric tensor g, in general relativity (linearized): g, =1, + h,,
n,, — Flat Minkowski space
h,, — Small perturbation representing the gravitational wave

Strain amplitude: /1 ~ 8GMR2a)02rb/ re* ~ 1072 - 107%
for binary black hole system (r=distance to observer)

Physically, h is a strain: AL/L

AL = |AL,— AL,| — Differential change in the lengths of the arms

h,

MirrorY

t=0 t=T/4 t=1/24 t=3T/4



Gravitational-wave interferometer
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Quantum standard limit in a
gravitational interferometer

C. M. Caves, PRL 45, 75 (1980)

y
TZZ T m Aim: to measure 7 = 7, — 4

F ; oD = 2bwz/c = 7 = (c/2bw)oD
b—> number of reflections at each end mirror
(b=2) v/ Photon-counting error in z:
(A2),. = (c/2bw)A(6D) ~ (c/2bw)N~?
- m
M > m y Minimum measuring time:
| 2,0) . T~ 2bC/c ~ 1If wherefis the

[ )

frequency of the gravitational
-— Z -~ wave. For f = 100 Hz, 7 ~ 0.01

seconds = b ~ 1500 km

Photo-

detect . - ight i
erectors Intensity — phase difference 0® between light in the two arms



Quantum standard limit in a
gravitational interferometer

y Radiation pressure

Z
FI_Z I m Difference in the momenta transferred to the end masses:

= 2hwb/c)(a'a — b'h)

out

(a +1b ) = 9’ = i(2ha)b/c)(dTIA9 — iﬁfl)'
= QhwblcH)(atabb" + aaib"b

(iain+bin) _Cﬁ@ _b Az)in

m  Averages in state | @,0):

=2 But: G =

M>m

[ ,0) . (P)=0
a 2, (PP = Qhwblc)?|al?

e ————

AP = (P2 = Qhwblc)N?
Photo-
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Quantum standard limit in a
gravitational interferometer

Photon-counting
(A2),. = (c/2b0)A(SD) ~ (c/2bw)N~"* = (c/2b)(h/ Pwr)'* ~ (c/2b)(AfI Pw)'?

Radiation pressure

(A2),, ~ (AP)2/2m = (hawb/c)(c/m)N'"? = (bImc)(hwPt’)!" ~ (b/me)(hwPIf)!

where N was expressed in terms of the power P = Nhw/7, and T was
replaced by 1/f, with f being the frequency of the gravitational wave. More important for

. , , 112 low frequencies
Total uncertainty: Az = [(AZ)pC + (Az)rp]

(a) (b)

laser photo-

E detector

suspended
laser mirror

—
Ax

visualization of shot noise visualization of radiation pressure noise



Physically, h is a strain: AL/L 107 b
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General estimation theory

We have shown that it is possible to win over the shot noise in optical
inferferometry, by using states with specific quantum features, like
states with well-defined number of photons or squeezed states. In these
examples, the estimation was obtained through measurement of the
difference of photon numbers in the outgoing arms of the interferometer.
It is not clear whether these are the best possible measurements, or
whether better bounds can be obtained by using other incoming states.

One may ask whether it is possible to find general bounds and
strategies for reaching them, which could be applied to many different
systems, and could eventually help us to identify which are the best
states and the best measurements for achieving the best possible
precision.

This is the aim of this series of lectures: to develop, and apply to
examples, a general estimation theory, capable not only to consider
unitary evolutions of closed systems, like the one described here for
the optical interferometer, but also open (noisy) systems.



General estimation theory

What are the best possible measurements?

What are the best incoming states, in order to get better
precision?

Is it possible to find general bounds and strategies for
reaching them, which could be applied to many different systems?



