

From cavity QED to quantum simulations with Rydberg atoms Lecture 2 QND photon counting and decoherence of a Schrödinger cat state

Michel Brune

École Normale Supérieure, CNRS, Université Pierre et Marie Curie, Collège de France, Paris

Giambiani Winter School

Cavity QED with microwave photons and circular Rydberg atoms:

... a powerfull tool for:

- Achieving strong coupling between single atoms single photons
- Observing collapse, revival of Rabi oscillation
- Preparing "large" Schrödinger cat State: equivalent to superposition of 0 and 44 photons

Topic of lectures 1-2: CQED with Rydberg atoms

- Cavity QED in the strong coupling regime:
 Resonant interaction: vacuum Rabi oscillations
- Non-destructive photon counting Seeing the same one photon again and again Quantum jump of light and
- Schrödinger cat state decoherence

Lecture 3:

Toward a circular Rydberg atom quantum simulator of XXZ spin Hamiltonian

1. Quantum Non-Demolition photon counting: single photon detection

- Ideal quantum measurement
- Experimental realization with Rydberg atoms

Quantum measurement: basic ingredients

Description of quantum objects

- **interaction:** Schrödinger equation.
- measurements: the state determines the statistics of results.
- Indirect measurement: measuring B provides information on A
- Quantum theory: the art of extracting classical information out of microscopic systems.

Quantum measurement: basic ingredients

• Entanglement: "The essence of quantum physics" (Heisenberg) Created by interaction, describes all correlations between quantum systems.

• irreversibility introduced by dissipation: macroscopic systems are dissipative. Dissipation plays a fundamental role in the coherence of quantum theory: explains the "decoherence" step during a quantum measurement

• The postulates:

V

Fundamentally random result of individual measurements

□ Possible results: eigenvalues a_n of an hermitian operator \hat{A} (observable).

 \square Probability of results if system in state $|\psi
angle$:

$$p(a_n) = \langle \psi | P_n | \psi \rangle$$

where P_n = projector on the eigenspace associatet to a_n

□ State after measurement:

$$\left|\psi_{after}\right\rangle = \frac{P_{n}\left|\psi\right\rangle}{\sqrt{p\left(a_{n}\right)}}$$

state collapse: the system's states changes discontinuously during the measurement process

• locks like a recipe:

□ does not tell what is a measurement apparatus

- does not tell how to built an apparatus measuring a given observable
- locks like a strange recipe:

a quantum system seems to be subjected to two kinds of evolution:

- → continuous evolution according to Schrödinger equation between measurements
- → state collapse during measurements

But a measurement apparatus is made of quantum objects obeying to Schrödinger equation: why should evolution during measurement deserve a special treatment?
Goal of the lecture: → look at this with a real experiment

1. Quantum Non-Demolition photon counting

- Ideal quantum measurement
- Experimental realization with Rydberg atoms

QND photon counting: The beginning of the story ...

Initial QND measurement proposal: 1990

• Our version of Moore's law:

The vacuum Rabi oscillation

New cavity technology

Niobium coated copper mirrors

Copper mirrors
 Diamond machined
 ~1 µm ptv form accuracy
 ~10 nm roughness

 Toroidal è single mode

 Sputter 12 µm of Nb Particles accelerator technique Process done at CEA, Saclay
 [E. Jacques, B. Visentin, P. Bosland]

The best photon box

Superconducting cavity resonance: $v_{cav} = 51 \text{ GHz}$

- Q factor = $4.2 \cdot 10^{10}$ - finesse= 4. 10⁹

Photons running for 39 000 km in the box before dying!

A new cavity setup

Experimental setup: an atomic clock

- An atomic clock (Ramsey setup) made of Rydberg for probing light-shifts induced by "trapped" photons
- State selective detection of atoms by field ionization: Atoms detected on "e" or "g" one by one

QND detection of photons: the principle

- Photon probes
 Circular Rydberg atoms
- Non-resonant interaction
- \Rightarrow light shifts

$$\Delta E_e = \hbar \frac{\Omega_0^2}{4\delta} (n+1)$$
$$\Delta E_g = -\hbar \frac{\Omega_0^2}{4\delta} n$$

Atoms used as clock for counting *n* by measuring light shifts

QND detection of 0 or 1 photon

1. Trigger of the clock.

2. precession of the spin through the cavity during *T*

Phase shift per photon

$$\Phi_0 = \pi$$

 $\rightarrow \frac{1}{\sqrt{2}} (|e\rangle + ie^{i\delta_{mw}T}|g\rangle) = |+_{\phi}\rangle$ $\delta_{mw} = \omega_{mw} - \omega_{at}$ $rotation by angle \phi = \delta_{mw}T \text{ around the Oz axis}$

QND detection of 0 or 1 photon

le>

 $\underline{\pi}$

Detection

1. Trigger of the clock.

2. precession of the spin through the cavity.

3. Detection of S_v : second $\pi/2$ rotation + detection of e-g

Atom detected in $e \Rightarrow$ field projected on |1> $g \Rightarrow$ field projected on |0>

Detecting blackbody photons

g ➡ field projected on |0> e ➡ field projected on |1>

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. Busk Hoff, M. Brune, J.M. R, S. H., Nature 446, 297 (07)

2. QND counting more than 1 photons

Experimental setup: an atomic clock

Use again the same atomic clock

Larger detuning \rightarrow phase shift per photon reduced to $\Phi_0 = \pi/4$

Seeing more photons

Detection of n>1

⇒ Photon numbers from
0 to 7 correspond
to 8 different final position
of the atom "spin"

But hese states are not orthogonal

 \Rightarrow detecting one atom is not enough to determine *n*.

Detection of n>1

Interaction with one atom prepares:

$$\left|\Psi\right\rangle = \sum_{n} C_{n} \left|+_{n \Phi_{0}}\right\rangle \otimes \left|n\right\rangle$$

 \Rightarrow Repeat measurement

The photon number is now encoded in a mesoscopic sample of atoms.

$$\left|\left\langle +_{n' \Phi_0} \left| +_{n \Phi_0} \right\rangle \right|^N \approx 0$$

Orthogonal states if N large enough

Detection of n>1

Interaction with one atom prepares:

$$\left|\Psi\right\rangle = \sum_{n} C_{n} \left|+_{n \Phi_{0}}\right\rangle \otimes \left|n\right\rangle$$

 \Rightarrow Repeat measurement

The photon number is now encoded in a mesoscopic sample of atoms.

That is a Schrödinger cat state:

the N atom collective spin points in a direction indicating the photon number

Décoding the photon number

For each n, on detects N identical copies of the atomic state

 $\left| +_{n \Phi_0} \right\rangle$

Determination of atom spin by « tomography »:

N atoms \rightarrow *N*/4 atoms: measure $\langle S_{\phi_R} \rangle$ with 4 different setings of ϕ_R \rightarrow calculate $\langle S_x \rangle$ and $\langle S_y \rangle$ For large enough *N*, $\Delta \varphi_s \propto \frac{1}{\sqrt{N}} < \Phi_0$ and different photon numbers should be distinguished

Atom spin state tomography

Method: 1- inject a coherent field $\langle n \rangle$ =3.5 photons. 2- detection of 110 consecutive atoms, T_{measure}=26 ms

Method: 1- inject a coherent field $\langle n \rangle$ =3.5 photons. 2- detection of 110 consecutive atoms, T_{measure}=26 ms

Information acquisition by detecting 1 atom

 \mathbf{X}_{2}

Probability of *n* that are incompatible with the measurement result are cancelled.

Repeating the measurement with other values of j decimates other photon numbers

Information acquisition by detecting 1 atom

k = atom index

Progressive field collapse

Decoding (real data, not simulation)

Initial coherent state <n>=3.7 (±0.008)

Flat initial photon number distribution. The measurement result is determined by the real field

Progressive projection of the field on n=5 number state

C. Guerlin . et al. Nature August 23 (2007).

Coherent field at measurement time

 $\langle n \rangle = 3.4 \pm 0.008$

Repeated measurements: evolution of a continuously monitored field

Field evolution due to cavity damping: not to QND measurement

Exhibits all features of quantum theory of measurement:
 State collapse / Random result / repeatability

3. The "Schrödinger cat" and the quantum measurement problem

The border separation quantum and classical behavior

Zurek, Physics Today (1991)

Quantum measurement: basic ingredients

- We have shown how to built an ideal QND meter of the photon number
- □ This detector is based on a destructive detector of the atom energy.
- Let us now built a more complete, fully quantum, model of detector including the dissipative part

Quantum description of a meter: the "Schrödinger cat" problem

One encloses in a box a cat whose fate is linked to the evolution of a quantum system: one radioactive atom.

The "Schrödinger cat"

 One closes the box and wait until the atom is disintegrated with a probability 1/2

• When opening the box is the cat dead, alive or in a superposition of both?

- Before opening the box, the system is isolated and unitary evolution prepares a maximally atom-meter entangled state
- Does this state "really" exists?
 - → a more relevant question: can one perform experiments demonstrating cat superposition state? Up to which limit?
- That is a fundamental question for the quantum theory of measurement: how does the unphysical entanglement of SC state vanishes at the macroscopic scale. That is the problem of the transition between quantum and classical world

$$\frac{1}{\sqrt{2}} \left(|a\rangle + |b\rangle \right) \implies \frac{1}{\sqrt{2}} \left(|a, \bigcup_{t=1}^{\text{order}} \right) + |b, \bigcup_{t=1}^{\text{order}} \right)$$

$$\frac{1}{\sqrt{2}}(|e\rangle + |g\rangle) \implies \frac{1}{\sqrt{2}}(|e, |e, |e, |g, |e, |g, |\rangle)$$

- Schrödinger point of view: unitary evolution should "obviously" not apply any more at "some scale".
- It seems that the atom-meter space contains to many states for describing reality
- Including dissipation due to the coupling of the meter to the environment will provide a physical mechanism "selecting" the physically acceptable states: Zurek's "pointer states".

Let's lock at this in a real experiment using a meter whose size can be varied from microscopic to macroscopic world.

4. A mesoscopic field as atomic state measurement apparatus

A mesoscopic "meter": coherent field states

QND detection of atoms using __non-resonant interaction with a coherent field

QND detection of atoms using __non-resonant_interaction_with_a_coherent_field_

QND detection of atoms using non-resonant interaction with a coherent field

QND detection of atoms using non-resonant interaction with a coherent field

The field phase "points" on the atomic state

Atom-meter entanglement

$$\frac{1}{\sqrt{2}}(|e\rangle+|g\rangle)\otimes|\alpha\rangle \rightarrow \frac{1}{\sqrt{2}}(|e\rangle\otimes|\alpha.e^{i\Phi_{0}}\rangle+|g\rangle\otimes|\alpha.e^{-i\Phi_{0}}\rangle)$$

$$\frac{1}{\sqrt{2}} \left(|e\rangle + |g\rangle \right) \implies \frac{1}{\sqrt{2}} \left(|e, \nabla_{e_{1}} \nabla_{e_{2}} \nabla_{e_{1}} \nabla_{e_{1$$

This is a "Schrödinger cat state"

Preparation of the cavity cat state

Phase shift per photon Φ_0

$$\frac{1}{\sqrt{2}} \left(\left| e \right\rangle + \left| g \right\rangle \right) \otimes \left| \alpha \right\rangle \implies \frac{1}{\sqrt{2}} \left(\left| e \right\rangle \otimes \left| \alpha \cdot e^{i\Phi_0/2} \right\rangle + \left| g \right\rangle \otimes \left| \alpha \cdot e^{-i\Phi_0/2} \right\rangle \right)$$

Preparation of the cavity cat state

Phase shift per photon Φ_{\circ}

$$\frac{1}{\sqrt{2}} \left(\left| e \right\rangle + \left| g \right\rangle \right) \otimes \left| \alpha \right\rangle \quad \Rightarrow \quad \frac{1}{\sqrt{2}} \left(\left| e \right\rangle \otimes \left| \alpha \cdot e^{i\Phi_0/2} \right\rangle + \left| g \right\rangle \otimes \left| \alpha \cdot e^{-i\Phi_0/2} \right\rangle \right)$$

• Field state after detection:

Depending on the detected atomic state the cat has a well defined photon number parity.

For π per photon phase shift, one atom measures just the field parity. Projection on a cat state is the "back-action" of parity measurement.

5. Schrödinger cat states reconstruction a movie of decoherence

Measuring the field density operator?

General field state description: density operator

$ ho_{field}$ =	ρ_{00}	$ ho_{_{01}}$	$ ho_{\scriptscriptstyle 02}$	•]
	$ ho_{10}$	$ ho_{\scriptscriptstyle 11}$	$ ho_{12}$	•
	$ ho_{ m 20}$	$ ho_{_{21}}$	$ ho_{\scriptscriptstyle 22}$	•
		•	•	•

 $ho_{\it field}$

 $\hat{D}(\alpha) = e^{\alpha a^+ - \alpha^* a}$

QND counting of photons \Rightarrow measurement of diagonal elements ρ_{nn}

How to measure the offdiagonal elements of ρ_{field} ?

 \Rightarrow by counting photons after applying "displacement"

 $\rho_{\text{field}}^{(\alpha)} = \hat{D}(\alpha) \rho_{\text{field}} \hat{D}^{+}(\alpha)$ Displacement operator matrix elements of ρ_{field} .

The displacement operator is the unitary transform corresponding to the coupling to a classical source. It mixes diagonal and off-diagonal matrix elements of ρ_{field} . Measuring the photon number after displacement for a large number of different a gives information about all

• Various possibilities:

 $\Box \text{ Direct fit of } \rho_{field} \text{ of the measured data } P_{e,g} \left(\hat{D}(\alpha) \rho_{field} \hat{D}^{\dagger}(\alpha) \right)$

- □ Maximum likelihood: find ρ_{field} which maximizes the probability of finding the actually measured results g_i .
- Maximum entropy principle: find ρ_{field} which fits the measurements and additionally maximizes entropy
 S=ρ_{field}log(ρ_{field}).
 V. Bužek and G. Drobný, *Quantum tomography via the MaxEnt principle*

via the MaxEnt principle, Journal of Modern Optics **47**, 2823 (2000)

Estimates the state only on the basis of measured information: in case of incomplete set of measurements, gives a "worse estimate of ρ_{field} .

In practice the two last methods give the same result provided one measures enough data completely determining the state.

1- prepare the state to be measured $|\psi_{cat}\rangle$

2- measure $P_{e,g}(\hat{D}(\alpha)\rho_{field}\hat{D}^{+}(\alpha))$ for a large number of different values of displacement $D(\alpha)$ (400 to 600 values).

3- reconstruct $\rho_{\it field}$ by maximum entropy method

4- calculate Wigner function from $\rho_{\it field}$.

Even (odd) cat has even (odd) photon number statistics

Fidelity of the preparation and reconstruction - 66% (71% for the odd state)

Reconstructed Wigner function

Reconstructed Wigner function

Classical components

≈2.1 photons in each classical component (amplitude of the initial coherent field)

cat size $D^2 \approx 7.5$ photons

coherent components are completely separated (D > 1)

Deleglise et al. Nature **455**, 510 (2008)

Reconstructed Wigner function

quantum superposition of two classical fields *(interference fringes)*

quantum signature of the prepared state (negative values of Wigner function)

A larger cat for observing decoherence

- Initial coherent field $\beta^2 = 3.5$ photons
- Measurement for 400 values of α .

State fidelity with respect to the expected state including phase shift non-lineariry (insets)

F= 0.72

Movie of decoherence

- For long atom-cavity interaction time field damping couples the system to the outside world
- → a complete description of the system must take into account the state of the field energy "leaking" in the environment.
- General method for describing the role of the environment:

$$\frac{d\rho^{field}}{dt} = -\frac{1}{2T_{cav}} \left[a^{+}a, \rho^{field}\right]_{+} + \frac{1}{T_{cav}}a\rho^{field}a^{+}$$

master equation of the field density matrix

• Physical result: decoherence

$$au_{\scriptscriptstyle dec} pprox rac{ au_{\scriptscriptstyle cav}}{\overline{N}}$$

The origin of decoherence: entanglement with the environment

• Decay of a coherent field:

 $\begin{aligned} |\alpha(0)\rangle \otimes |vacuum\rangle_{env} \rightarrow |\alpha(t)\rangle \otimes |\beta(t)\rangle_{env} \\ \alpha(t) = \alpha(0).e^{-t/\tau_{cav}} \end{aligned}$

 the cavity field remains coherent
 the leaking field has the same phase as α

□ no entanglement during decay:

That is a property defining coherent states: coherent state are the only one which do not get entangled while decaying

The origin of decoherence: entanglement with the environment

Decay of a "cat" state:

$$|\Psi_{cat}\rangle \otimes |vacuum\rangle_{env}$$

$$\Rightarrow 1/\sqrt{2} \left(\left| \alpha_{+}(t) \right\rangle \otimes \left| \beta_{+}(t) \right\rangle_{env} + \left| \alpha_{-}(t) \right\rangle \otimes \left| \beta_{-}(t) \right\rangle_{env} \right)$$

Detailed calculation in PHYSICA SCRIPTA T78, 29 (1998)

The origin of decoherence: entanglement with the environment

• Decay of a "cat" state:

 $|\Psi_{cat}\rangle \otimes |vacuum\rangle_{env}$ $\Rightarrow 1/\sqrt{2} \left(|\alpha_{+}(t)\rangle \otimes |\beta_{+}(t)\rangle_{env} + |\alpha_{-}(t)\rangle \otimes |\beta_{-}(t)\rangle_{env} \right)$

cavity-environment entanglement: the leaking field "broadcasts" phase information

□ trace over the environment

⇒ decoherence (=diagonal field reduced density matrix) as soon as:

$$\left< \beta_{-}(t) \right| \beta_{+}(t) \right>_{env} \approx 0$$

Detailed calculation in PHYSICA SCRIPTA T78, 29 (1998) $\left|\beta(t)\right|^{2} \approx 1 \Longrightarrow t > \frac{T_{cav}}{\overline{N}} \approx T_{dec}$

The decoherence time

Detailed calculation in PHYSICA SCRIPTA T78, 29 (1998)

Rigorous expression of decoherence time

$$T_{decoh} = \frac{2T_{cav}}{D^2} = \frac{T_{cav}}{\overline{N} \cdot 2\sin^2\left(\Phi\right)}$$

Infinitely short decoherence time for macroscopic fields. The Schrödinger cat does not exist for "long" time.

Decoherence of a D²=11.8 photon cat state

Theory: $T_{dec} = 2T_{cav}/D^2 = 22 \text{ ms}$

+ small blackbody contribution @ 0.8 K

 $T_{dec} = 19.5 \text{ ms}$

M.S. Kim and V. Bužek, Schrödinger-cat state at finite temperature, Phys. Rev. A 46, 4239 (1992)

 \Rightarrow Physical origin of decoherence:

leak of information into the environment.

⇒ The Schrödinger cat problem: the experimentalist does not kill the cat when opening the box. The environment "knows" whether the cat is dead or alive well before one opens the box.

⇒ The environment continuously performs unread repeated measurement of the cat state: the environment is looking at the box for you!

The "collapse" of the quantum state can be considered as a shortcut to describe this complex physical process

Does it solves "the measurement problem"?

No: if the problem consists in telling how or why nature is fundamentally random (no hidden variables, impossibility to tell "at which time" nature makes a choice).

Yes: once one a priori accepts the statistical nature of quantum theory, which describes the statistics of classical events, decoherence is the mechanism providing classical probabilities for these events.

\Rightarrow Definition of "pointer basis" of a meter: (Zurek)

- □ the pointer state of the meter is a classical state
- once decoherence occurs, the physical state of a meter is described by a diagonal density matrix in the pointer basis:

- ⇒ at this level, quantum description only involves classical probabilities and no macroscopic superposition states.
- ⇒ The decoherence is the physical process defining "pointer states" of a meter. It is fine to have a definition not relying on experimentalist's intuition!

Summary

Exploring the quantum with trapped photons and Rydberg atoms:

- The strong coupling regime
- QND photons counting: The quantum jumps of light
- Generation of cat states in a cavity and full state reconstruction
- Time evolution and decoherence of the cat state

Cavity QED perspective: two-cavity experiment

• Principle:

Fast atoms crossing two microwave high-Q cavities

• Projects

Quantum thermodynamics

(ANR with A. Auffeves and P. Sénellart)

 Recent result: Reconstruction of a two mode non-local state

arXiv:1904.04681v2

Heat going from cold to hot using information! Exp. In progress

• People: Igor Dostenko (Ass. Prof. CdF) and Valentin Métillon (PhD)

A work starting in 1991

Jean-Michel Raimond Serge Haroche Michel Brune

The LKB-ENS cavity QED team

Staring, in order of apparition

Serge Haroche **Michel Gross** Claude Fabre Philippe Goy Pierre Pillet Jean-Michel Raimond **Guy Vitrant** Yves Kaluzny Jun Liang Michel Brune Valérie Lefèvre-Seguin Jean Hare Jacques Lepape Aephraim Steinberg Andre Nussenzveig Frédéric Bernardot Paul Nussenzveig Laurent Collot Matthias Weidemuller François Treussart Abdelamid Maali **David Weiss** Vahid Sandoghdar Jonathan Knight Nicolas Dubreuil Peter Domokos Ferdinand Schmidt-Kaler Jochen Drever

- Peter Domokos
- Ferdinand Schmidt-
- Kaler

- Ed Hagley
- Xavier Maître
- Christoph Wunderlich
- Gilles Nogues
- Vladimir Ilchenko
- Jean-François Roch
- Stefano Osnaghi
- Arno Rauschenbeutel
- Wolf von Klitzing
- Erwan Jahier
- Patrice Bertet
- Alexia Auffèves
- Romain Long
- Sébastien Steiner
- Paolo Maioli
- Philippe Hyafil
- Tristan Meunier
- Perola Milman
- □ Jack Mozley
- □ Stefan Kuhr
- Sébastien Gleyzes
- Christine Guerlin
- Thomas Nirrengarten
- Cédric Roux
- Julien Bernu

Collaboration: L davidovich, N. Zaguri, P. Rouchon, A. Sarlette, S Pascazio, K. Mölmer ... Cavity technilogy: CEA Saclay, Pierre Bosland

- Ulrich Busk-Hoff
- Andreas Emmert
- Adrian Lupascu
- Jonas Mlynek
- Igor Dotsenko
- Samuel Deléglise
- Clément Sayrin
- Xingxing Zhou
- Bruno Peaudecerf
- Raul Teixeira
- Sha Liu
- Theo Rybarczyk
- Carla Hermann
- Adrien Signolles
- Adrien Facon
- Stefan Gerlich
- Than Long Nguyen
- Eva Dietsche
- Dorian Grosso
- Frédéric Assémat
- Athur Larrouy
- Valentin Métillon
- Tigrane Cantat-Moltrecht

- Strong coupling regime in CQED experiments:
 - F. Bernardot, P. Nussenzveig, M. Brune, J.M. Raimond and S. Haroche. "Vacuum Rabi Splitting Observed on a Microscopic atomic sample in a Microwave cavity". Europhys. lett. 17, 33-38 (1992).
 - P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J.M. Raimond, S. Haroche and W. Gawlik. "Preparation of high principal quantum number "circular" states of rubidium". Phys. Rev. A48, 3991 (1993).
 - M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond and S. Haroche: "Quantum Rabi oscillation: a direct test of field quantization in a cavity". Phys. Rev. Lett. 76, 1800 (1996).
 - □ J.M. Raimond, M. Brune and S. Haroche : "Manipulating quantum entanglement with atoms and photons in a cavity", Rev. Mod. Phys. vol.73, p.565-82 (2001).
 - P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J.M. Raimond and S. Haroche : "Interference with beam splitters evolving from quantum to classical : a complementarity experiment". Nature 411, 166 (2001).
 - □ E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J.M. Raimond and S. Haroche: "Generation of Einstein-Podolsky-Rosen pairs of atoms", PRL 79,1 (1997).
 - P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J.M. Raimond and S. Haroche : "Interference with beam splitters evolving from quantum to classical : a complementarity experiment". Nature 411, 166 (2001).

• Gates: QPG or C-Not, algorithm:

- □ M. Brune et al., Phys. Rev. Lett, **72**, 3339(1994).
- Q.A. Turchette et al., Phys. Rev. Lett. **75**, 4710 (1995).
- □ C. Monroe et al., Phys. Rev. Lett. **75**, 4714 (1995).
- □ A. Reuschenbeutel et al., PRL. G. Nogues et al. Nature 400, 239 (1999).
- S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond and S. Haroche, Phys. Rev. Lett. 87, 037902 (2001)
- □ F. Yamaguchi, P. Milman, M. Brune, J-M. Raimond, S. Haroche: "Quantum search with two-atom collisions in cavity QED", PRA 66, 010302 (2002).
- Q. memory:
 - □ X. Maître et al., Phys. Rev. Lett. **79**, 769 (1997).
- Atom EPR pairs:
 - **CQED:** E. Hagley et al., Phys. Rev. Lett. **79**, 1 (1997).
 - □ Ions: Q.A. Turchette et al., Phys. Rev. Lett. **81**, 3631 (1998).

- QND detection of photons:
 - G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J.M. Raimond and S. Haroche: "Seeing a single photon without destroying it", Nature, 400, 239 (1999).
 - S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. Busk Hoff, M. Brune, J.-M. Raimond and S. Haroche, Nature 446, 297-300 (2007):
 "Quantum jumps of light recording the birth and death of a photon in a cavity".
 - C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond and S. Haroche, Nature, article, Nature 448, 889 (2007) : "Progressive field-state collapse and quantum non-demolition photon counting".
- High Q superconducting cavity:
 - S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deleglise, S.
 Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and
 B. Visentin, Appl. Phys. Lett. 90, 164101 (2007): "Ultrahigh finesse Fabry-Pérot superconducting resonator".