Giambiani Winter School Buenos Aires July 2019

From cavity QED to quantum simulations with Rydberg atoms Lecture 1 The strong coupling regime QND photon counting

Michel Brune

École Normale Supérieure, CNRS, Université Pierre et Marie Curie, Collège de France, Paris

« Ridiculous » quantum phenomena

Schrödinger 1952 :

« one never experiments with just one electron, one atom or one molecule. In thought experiments we sometimes assume that we do, this invariably entails ridiculous consequences... »

(British Journal of the Philosophy of Sciences, vol 3, 1952)

• A thriving field worldwide

The four flavors of modern CQED

• Optical CQED

Ordinary atomic transitions and high finesse FP cavities

 $g \approx 50$ MHz; $\kappa \approx 100$ kHz; $\Gamma \approx 10$ MHz; $T_{int} \approx 1s$

• Solid-state CQED

□ Quantum dots coupled to bragg mirrors/PBG $g \approx 10 \text{ GHz}; \kappa \approx 1 \text{ GHz}; \Gamma \approx 1 \text{ GHz}; T_{\text{int}} = \infty$

• Circuit QED

 \Box Solid-state qubits and stripline cavities $g \simeq 100 MHz; \Gamma \ll \kappa \simeq 1 MHz; T_{int} = \infty$

<u>Microwave CQED</u>

□ (Circular) Rydberg atoms and superconducting cavities $g \approx 10 \text{ kHz}; \kappa \approx 1 \text{ Hz}; \Gamma \approx 30 \text{ Hz}; T_{int} \approx 100 \mu s$

Main topic of the course

Exploring the quantum with Rydberg atoms

With photons and cavities

 → cavity QED exploration of the fundamental aspects of quantum measurement:

 QND photon counting:
 Schrödinger cat and decoherence

→ Topic of lectures 1-2

With trapped Rydberg atoms

→ High potential for performing quantum simulation of XXZ spin Hamiltonian

→ Topic of lectures 3

Topic of lectures 1-2: CQED with Rydberg atoms

- Cavity QED in the strong coupling regime:
 Resonant interaction: vacuum Rabi oscillations
- Non-destructive photon counting Seeing the same one photon again and again Quantum jump of light and
- Schrödinger cat state decoherence

Lecture 3:

Toward a circular Rydberg atom quantum simulator of XXZ spin Hamiltonian

A work starting in 1991

Jean-Michel Raimond Serge Haroche

Michel Brune

1. One atom, one mode, the Jaynes-Cummings model

Cavity QED: spin and spring

→ Nearly ideal realization of a simple generic system

The Jaynes Cummings model:

+ a single two level atom, frequency ω_{at}

 $FSR >> \delta$

- + a single field mode, frequency ω_c
- + dipole coupling
- + negligible damping

• Atom-field Hamiltonian:

$$H_{at} = \frac{\hbar\omega_{at}}{2} \left[\left| e \right\rangle \left\langle e \right| - \left| g \right\rangle \left\langle g \right| \right]$$
$$H_{cav} = \hbar\omega_c \left[a^+ a + 1/2 \right]$$

 $H = H_{at} + H_{cav} + V_{at-cav}$

$$\begin{aligned} \Pi_{cav} &= \Pi \omega_c \left[d \ d + 1/2 \right] \\ V_{at-cav} &= -\vec{d} . \hat{\vec{E}}(\vec{r}) \\ \vec{d} &= \vec{d}_{eg} \left[\left| e \right\rangle \left\langle g \right| + \left| g \right\rangle \left\langle e \right| \right] \end{aligned}$$

Condition of validity:

- ω_c close to a single atomic transition: $|\delta| = |\omega_c \omega_{at}| << \omega_c, \omega_{at}$
- small cavity: only one mode close to resonance

The Jaynes Cummings hamiltonian

Rotating wave approximation (RWA):

$$V_{at-cav} = \hbar \Omega(\vec{r}) / 2 \left[\frac{a}{e} \right] \langle g | + a | g \rangle \langle e | + a^{+} | g \rangle \langle e | + a^{+} | e \rangle \langle g | \right]$$

Non-resonant terms are neglected

$$V_{at-cav} \approx \hbar \Omega(\vec{r})/2 \left[a \left| e \right\rangle \left\langle g \right| + a^{+} \left| g \right\rangle \left\langle e \right| \right]$$

$$H_{JCM} = H_{at} + H_{cav} + V_{at-cav}$$

• Vacuum Rabi frequency: $\Omega(\vec{r}) = -2d_{eg} \cdot \vec{f}(\vec{r}) \cdot E_{\omega} = \Omega_0 \cdot \left| \vec{f}(\vec{r}) \right|$

Maximum coupling at cavity center

$$\Omega_0 = 2d_{eg} \cdot \sqrt{\frac{\hbar\omega}{2\varepsilon_0 V_{cav}}}$$

 $\Omega_{0} \ll \omega_{at}, \omega_{c}$

• Validity of RWA:

amplitude distribution in the cavity $\vec{f}(\vec{r})$

spatial field

Dressed energy levels at resonance $(\omega_{at} = \omega_c)$

• Levels just couple by pairs (except the ground state)

 level splitting scales as the Field amplitude

• Eigenvalues: $E_{\pm n} = \hbar \omega_c (n + 1/2) + \hbar \omega_{at} \pm \hbar \Omega_0 / 2\sqrt{n+1}$ • Eigenstates: $|\pm n\rangle = 1/\sqrt{2} [|e,n\rangle \pm |g,n+1\rangle]$

2. Rydberg atoms in a cavity: achieving the strong coupling regime

One photon and one atom in a box:

- Photon box: superconducting microwave cavity
- "circular" Rydberg atoms

Microwave Rydberg atom CQED

Two essential ingredients:

• Photon trap: the "spring"

Photon probe:
 the spin
 Single Rydberg atoms

• Our version of Moore's law:

The "Spin": Circular Rydberg atoms

Photon probes
Circular Rydberg atoms:
1=lml=n-1

- Large dipole 1500 au
- Long lifetime: 30ms
- detected une by one

- atoms detected one by one by selective ionization in an electric field
- → measurement of internal energy state of the atom after interaction with C
- → in term of "spin": σ_z measurement

Experimental set-up

Laser velocity selection

Circular atom preparation: - 53 photons process - pulsed preparation 0.1 to 10 atoms/pulse

⁸⁵Rb

Cryogenic environment T=0.6 to 1.3 K →weak blackbody radiation State selective detector One atom = one click

e

Experimental setup (Version1)

Resonant atom-field coupling: dynamic point of view

Coherent Rabi oscillation

Coherent Rabi oscillation replaces irreversible damping by spontaneous emission

Vacuum Rabi oscillation and quantum gates

3. Resonant interaction with slow atoms

Direct observation of discrete Rabi frequencies

The new, slow-atoms cavity QED setup

Technical challenges

- preparation of Circular Rydberg atoms inside the cavity
- detection of Rydberg atoms inside the cavity: not yet implemented
- fabrication of a new superconducting cavity setup

$$T_{cav} = 8 \text{ ms}$$

Not the best ever ... but good-enough for what follows

\Rightarrow Cavity QED experiment in a new regime with 10 m/s atoms:

- Resolution of atom-cavity dressed states by microwave spectroscopy using the classical source S
- Observation of resonant interaction over unprecedented timescale
- → Preparation of large "Schrödinger cat" sates

Rabi oscillation in a small coherent field

Coherent field states

- Number state: $|N\rangle$
- Quasi-classical state: $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{N} \frac{\alpha^N}{\sqrt{N!}} |N\rangle$; $\alpha = |\alpha| e^{i\Phi}$

• Rabi oscillation in a coherent field:

$$P_g(t) = \sum_{N} P(N) \frac{1}{2} \left(1 - \cos\left(\Omega_0 t \sqrt{N+1}\right) \right)$$

Rabi oscillation in a coherent state

Eberly et al. PRL 44, 1323 (1980)

Revival time

$$T_{rev} = 2T_0\sqrt{\overline{n}}$$

 T_0 Vacuum Rabi oscillation period

Rabi oscillation in a coherent state

Eberly et al. PRL 44, 1323 (1980)

Revival time

$$T_{rev} = 2T_0\sqrt{\overline{n}}$$

 T_0 Vacuum Rabi oscillation period

Revival as a direct manifestation of photon graininess

Rabi oscillation in a coherent state

Eberly et al. PRL 44, 1323 (1980)

Revival time

$$T_{rev} = 2T_0\sqrt{\overline{n}}$$

 T_0 Vacuum Rabi oscillation period

Revival in the micromaser

Revival as a direct manifestation of photon graininess

Rabi oscillation in a small coherent field

$$\Phi(t) = \Omega_0 . t / 4 \sqrt{\bar{N}}$$

Rabi oscillation in a small coherent field

- Initially: coherent field $|\alpha>$
- Resonant interaction with atom in l
 e> during time t₁
- →The atom undergoes Rabi oscillations

→The field splits into two components rotating in opposite directions

→The atomic state also rotates on the Bloch sphere

At "half revival" the atom is disentangled

$$|e,\alpha\rangle \Rightarrow |\psi_{\text{at-field}}(t)\rangle \approx \frac{1}{\sqrt{2}} \left(|\alpha e^{+i\pi}\rangle + |\alpha e^{-i\pi}\rangle\right) \otimes \left|\psi_{at}\left(\frac{t_{\text{rev}}}{2}\right)\right\rangle$$

J. Gea-Banacloche, PRL. 65, 3385 (1990) G. Morigi et al. Phys. Rev. A 65, 040102 (2002) Meunier et al. PRL 010401 (2005)

 Preparation of a field "cat state"
 (more in tecture 2)

Revival as a direct manifestation of photon graininess Resonant interaction: the fastest cat preparation

Rabi oscillation in a coherent state

• Rabi oscillation in a cat state $\left|\psi_{cat}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|i\beta\right\rangle - \left|-i\beta\right\rangle\right)$

Atom "reset" in e after "half revival" interaction time

- → the same atom starts a new Rabi oscillation in the cat state
- → Revival at T_{rev}/2 is the signature of odd photon number distribution

Rabi oscillation in a coherent state

• Rabi oscillation in a cat state $\left|\psi_{cat}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|i\beta\right\rangle - \left|-i\beta\right\rangle\right)$

"Odd" cat state: the Rabi oscillation spectrum reveals the cat parity

An atomic fountain experiment

Another interesting direction
 Dressed states spectroscopy

F. Assémat et al. In preparation

- → spectroscopic resolution of dressed states with different photon numbers
- open new possibilities for quantum state manipulation: "Quantum Zeno dynamics"

J.M. Raimond et al PRL **105**, 213601 (2010)

4. Quantum Non-Demolition photon counting

- Ideal quantum measurement
- Experimental realization with Rydberg atoms

Quantum measurement: basic ingredients

Description of quantum objects

- **interaction:** Schrödinger equation.
- measurements: the state determines the statistics of results.
- Indirect measurement: measuring B provides information on A
- Quantum theory: the art of extracting classical information out of microscopic systems.

Quantum measurement: basic ingredients

• Entanglement: "The essence of quantum physics" (Heisenberg) Created by interaction, describes all correlations between quantum systems.

• irreversibility introduced by dissipation: macroscopic systems are dissipative. Dissipation plays a fundamental role in the coherence of quantum theory: explains the "decoherence" step during a quantum measurement

• The postulates:

Fundamentally random result of individual measurements

□ Possible results: eigenvalues a_n of an hermitian operator (observable).

 \square Probability of results if system in state $|\psi
angle$:

$$p(a_n) = \langle \psi | P_n | \psi \rangle$$

where P_n = projector on the eigenspace associated to a_n .

□ State after measurement:

$$\left|\psi_{after}\right\rangle = \frac{P_{n}\left|\psi\right\rangle}{\sqrt{p\left(a_{n}\right)}}$$

state collapse: the system's states changes discontinuously during the measurement process

• locks like a recipe:

□ does not tell what is a measurement apparatus

- does not tell how to built an apparatus measuring a given observable
- locks like a strange recipe:

a quantum system seems to be subjected to two kinds of evolution:

- → continuous evolution according to Schrödinger equation between measurements
- → state collapse during measurements

But a measurement apparatus is made of quantum objects obeying to Schrödinger equation: why should evolution during measurement deserve a special treatment?
Goal of the lecture: → look at this with a real experiment

4. Quantum Non-Demolition photon counting

- Ideal quantum measurement
- Experimental realization with Rydberg atoms

QND photon counting: The beginning of the story ...

Initial QND measurement proposal: 1990

• Our version of Moore's law:

The vacuum Rabi oscillation

New cavity technology

Niobium coated copper mirrors

Copper mirrors
 Diamond machined
 ~1 µm ptv form accuracy
 ~10 nm roughness

 Toroidal è single mode

 Sputter 12 µm of Nb Particles accelerator technique Process done at CEA, Saclay
 [E. Jacques, B. Visentin, P. Bosland]

The best photon box

Superconducting cavity resonance: $v_{cav} = 51 \text{ GHz}$

- Q factor = $4.2 \cdot 10^{10}$ - finesse= 4. 10⁹

Photons running for 39 000 km in the box before dying!

A new cavity setup

Experimental setup: an atomic clock

- An atomic clock (Ramsey setup) made of Rydberg for probing light-shifts induced by "trapped" photons
- State selective detection of atoms by field ionization: Atoms detected on "e" or "g" one by one

QND detection of photons: the principle

- Photon probes
 Circular Rydberg atoms
- Non-resonant interaction
- \Rightarrow light shifts

$$\Delta E_e = \hbar \frac{\Omega_0^2}{4\delta} (n+1)$$
$$\Delta E_g = -\hbar \frac{\Omega_0^2}{4\delta} n$$

Atoms used as clock for counting *n* by measuring light shifts

1. Trigger of the clock.

$$|e\rangle \rightarrow \frac{1}{\sqrt{2}}(|e\rangle + i|g\rangle) = |+_x\rangle$$

In term of a spin $\frac{1}{2}$, this is a $\pi/2$ rotation around the Ox axis

QND detection of 0 or 1 photon

1. Trigger of the clock.

2. precession of the spin through the cavity during *T*

Phase shift per photon

$$\Phi_0 = \pi$$

 $\rightarrow \frac{1}{\sqrt{2}} (|e\rangle + ie^{i\delta_{mw}T}|g\rangle) = |+_{\phi}\rangle$ $\delta_{mw} = \omega_{mw} - \omega_{at}$ $rotation by angle \phi = \delta_{mw}T \text{ around the Oz axis}$

QND detection of 0 or 1 photon

1. Trigger of the clock.

2. precession of the spin through the cavity.

3. Detection of S_v : second $\pi/2$ rotation + detection of e-g

Atom detected in e
field projected on |1> $g \Rightarrow$ field projected on |0>

Detecting blackbody photons

g ➡ field projected on |0> e ➡ field projected on |1>

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. Busk Hoff, M. Brune, J.M. R, S. H., Nature 446, 297 (07)

Conclusion of lecture 1:

Cavity QED with microwave photons and circular Rydberg atoms:

... a powerfull tool for:

- Achieving strong coupling between single atoms single photons
- Observing collapse, revival of Rabioscillation and Schrödinger cat State
- Realizing an ideal projective detection of single photons

- Strong coupling regime in CQED experiments:
 - F. Bernardot, P. Nussenzveig, M. Brune, J.M. Raimond and S. Haroche. "Vacuum Rabi Splitting Observed on a Microscopic atomic sample in a Microwave cavity". Europhys. lett. 17, 33-38 (1992).
 - P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J.M. Raimond, S. Haroche and W. Gawlik. "Preparation of high principal quantum number "circular" states of rubidium". Phys. Rev. A48, 3991 (1993).
 - M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond and S. Haroche: "Quantum Rabi oscillation: a direct test of field quantization in a cavity". Phys. Rev. Lett. 76, 1800 (1996).
 - □ J.M. Raimond, M. Brune and S. Haroche : "Manipulating quantum entanglement with atoms and photons in a cavity", Rev. Mod. Phys. vol.73, p.565-82 (2001).
 - P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J.M. Raimond and S. Haroche : "Interference with beam splitters evolving from quantum to classical : a complementarity experiment". Nature 411, 166 (2001).
 - □ E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J.M. Raimond and S. Haroche: "Generation of Einstein-Podolsky-Rosen pairs of atoms", PRL 79,1 (1997).
 - P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J.M. Raimond and S. Haroche : "Interference with beam splitters evolving from quantum to classical : a complementarity experiment". Nature 411, 166 (2001).

• Gates: QPG or C-Not, algorithm:

- □ M. Brune et al., Phys. Rev. Lett, **72**, 3339(1994).
- Q.A. Turchette et al., Phys. Rev. Lett. **75**, 4710 (1995).
- C. Monroe et al., Phys. Rev. Lett. **75**, 4714 (1995).
- □ A. Reuschenbeutel et al., PRL. G. Nogues et al. Nature 400, 239 (1999).
- S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond and S. Haroche, Phys. Rev. Lett. 87, 037902 (2001)
- □ F. Yamaguchi, P. Milman, M. Brune, J-M. Raimond, S. Haroche: "Quantum search with two-atom collisions in cavity QED", PRA 66, 010302 (2002).
- Q. memory:
 - □ X. Maître et al., Phys. Rev. Lett. **79**, 769 (1997).
- Atom EPR pairs:
 - **CQED:** E. Hagley et al., Phys. Rev. Lett. **79**, 1 (1997).
 - □ Ions: Q.A. Turchette et al., Phys. Rev. Lett. **81**, 3631 (1998).

- QND detection of photons:
 - G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J.M. Raimond and S. Haroche: "Seeing a single photon without destroying it", Nature, 400, 239 (1999).
 - S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. Busk Hoff, M. Brune, J.-M. Raimond and S. Haroche, Nature 446, 297-300 (2007):
 "Quantum jumps of light recording the birth and death of a photon in a cavity".
 - C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond and S. Haroche, Nature, article, Nature 448, 889 (2007) : "Progressive field-state collapse and quantum non-demolition photon counting".
- High Q superconducting cavity:
 - S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deleglise, S.
 Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and
 B. Visentin, Appl. Phys. Lett. 90, 164101 (2007): "Ultrahigh finesse Fabry-Pérot superconducting resonator".