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Quantum Advantages

Quantum Computing
» exponential speed up

Quantum Cryptography
» non-breakable secret key distribution

Quantum Metrology
» increased accuracy

Quantum Simulation
» faster predictions

Quantum Biology
» increased transfer efficiency




Quantum thermodynamics - Motivation
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.- include small ensemble sizes
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Quantum Thermodynamics Conference QTD2020

Barcelona - Spain
20 - 24 April 2020

check QTD webpage http://gtd.ifisc.uib-csic.es/ for updates
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Lecture overview EXETER

| - Work extraction from quantum coherences

Il - Maxwell’s demon and his exorcism - experimental evidence

lll - Thermodynamics beyond the weak coupling limit
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Outline - | EXETER

e Laws of Thermodynamics

e Landauer’s principle

e Quantum Jarzynski equality
 Thermodynamic resource theory

« Work from quantum coherences

 Implications
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 Implications



from ca 1800 engines
<& ' MiCroscopic - ™ \ N\
description of \ -
macroscopic <’ » .
thermodynamics § ideal gas
” \/‘“ NkT=pV
i 9 statistical physics
thermodynamics Softrmann 1880

1st: AU = <Qabs> — <Wext> . y
2nd: TAS:n > (Qaps) macroscopic quantities

internal energy, U

bath with heat. Q
temperature T ’
Ui

work, W
S, @

process temperature, T
entropy, S
' 1 pressure, p
volume, V Clausius 1865
<W€9€t> <Qabs>




microscopic o /\ \ /\
description of N\ ¥
macroscopic <’ »
thermodynamics ¢

% A
statistical physics
o

Shannon 1948
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Landauer’s erasure principle EXETER

Anders

erasure of bits (at finite
energy conservation: AE =W + Q operating temperature)

/ dissipates heat
can heat be /

reduced to 07 Landauer 1960ties

(i.e. resetting bits in your computer to 0)



Landauer’s principle

classical or
erasure of 1 bit of information = state transfer quantum bit

oV = Z{0){o] + SIS -, @ — (o)

S = —tr|[pln p]

2nd law

T AS > Qabs —) Qgen > kBT In 2
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Landauer’s erasure principle EXETER
erasure of 1 bit of information ~ Qaiss = kpT'In2 < mnimum
. - . . issipated
results in dissipation of heat: / N operating  peat
Boltzmann temperature
constant in Kelvin

Experimental realisation of Landauer erasure:

a b
10 v 10
1 5 \/\/
0 1 1 1 0 1 . 1 1
-0.5 0 0.5 -0.5 0 0.5
c d

10 10

Potential (kT)
o o
{
o (84}

&

> X
Particle (silicon bead) swimming e
in water in equilibrium at T. " 0 ¢
5r 5t
Trapped in double-well potential.

Berut et al, Nature 483, 187 (2012) Position (um) ~ Position (um)
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Landauer’s erasure principle EXETER
erasure of 1 bit of information &diss = k1 In 2 o
, .. . _ issipated
results in dissipation of heat: /7 N operating heat
Boltzmann temperature
constant in Kelvin

Experimental realisation of Landauer erasure:

Dissipated heat in units ksT plotted
over time taken to implement erasure.

Viz)

4 - T T
T Qdiss
3k
L kT
> X 2 % Landauer limit -
Particle (silicon bead) swimming L~
in water in equilibrium at T. N AR = _“L_g; ——
Trapped in double-well potential. o f

ol 10 20 30 [ 20
Berut et al, Nature 483, 187 (2012) non-quasistatic  time in s quasistatic
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time

Landauer’s erasure principle EXETER
erasure of 1 bit of information &diss = k1 In 2 o
, .. . _ issipated
results in dissipation of heat: /7 N operating heat
Boltzmann temperature
constant in Kelvin

Another experimental realisation of Landauer erasure:

~ A\
work required for
\_| / \_| /
erasure.
Nt t /(@
3_
—/ o~ =, Landauer limit
=3
~ o~ T 1ne e _
| . p=1 p=0.5 p=
O_ .................................................................................. p=05
erasure no erasure T

1 10 100

Scaled cycle time 1
Jun et al, PRL 113, 190601 (2014)



MiCroscopic o
description of N\
macroscopic <’ »
thermodynamics $

. \/'«‘

statistical physics

1st: AU = <Qab3> — <Wext>
ond: TAS:, > (Qaps)

+ information is physical

Ssn = Stn

- information erasure &

causes heat dissipation| Landauer 1961

from ca 1950
computers

& -

information theory
information: Sg;, > 0

erasure: state transfer

p =5 10){0]+ 5 [1){1] = [0){0

generated heat
<Qgen> 2 kBT 1112




MiCroscopic o

description of N\ -
macroscopic <‘ »”
thermodynamics $

. \/«‘

statistical physics

thermodynamics
1st: AU = <Qabs> = <Wext>

ond: TAS;, > (Qaps)
+ information is physical
Ssn = St

+ information erasure il fan
causes heat dissipation| Landauer 1961

from ca 1980

Sor — Syn qubit
from ca 1950
computers
&= < o
quantum information theory
information theory gu. superpositions » no-cloning theorem » secure gkd

information: Sgp, > 0 qu. correlations » non-locality » qu. computing



from ca 1995
microscopic < _ BW>
description of €

macroscopic —
thermodynamics e BAF

stochastic
thermodynamics

thermodynamics
1st: AU = <Qabs> = <Wext>

ond: TAS:, > (Qaps)

+ information is physical

Ssn = Stn

« information erasure ll
causes heat dissipation| Landauer 1

S A
_ i

961

from ca 1980

Sor — Syn qubit
from ca 1950 — J
computers - =
S0 ~ informat
quantum information theory
information theory gu. superpositions » no-cloning theorem » secure gkd

information: Sgp, > 0 qu. correlations » non-locality » qu. computing
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Stochastic thermodynamics EXETER
& classical fluctuation relations

Jarzynski equality Jarzynski, PRL (1997)

A P5abc
5 —BW\ _ _—BAF
ACAG-CGACA <€ /B > — 6 /8 \
G-C
P5a $-Su / f
G-C —_ , —_—
A non-equilibrium inverse equilibrium free
AA-U '
Y. | Acich buige work temperature M€Y
X
prgsa |
GyuCC—g.a A
P5c §:§ 8!
G-C :
o A:U g
g G-% Psb T v
m U-G = g
c U-G Q S
g A% X g 10 R
3 AA [ & 1
Q =.
% RNA/DNA RNA/DNA ;
handle handle 8 1
B ’\— /:--'- =4 54
Biotin Digoxigenin
30 nm Extension (nm) 50 nm

Liphardt, et al., Science 296, 1832 (2002) Crooks relation Crooks, PRE (2000)



from ca 1800 engines from ca 1995

P g microscopic ( —BW>
description of €
macroscopic — /

thermodynamics e BAF

single ion engine - Singer group

stochastic

i thermodynamics
thermodynamics quantum
1st: AU = <Qabs> — (Wemt> fluctuation

relations

ond: TAS:, > (Qabs)

+ information is physical

Ssn = Stn

- information erasure _ > i
causes heat dissipation| Landauer 1961

from ca 1980
qubit

Ssn — Sun

from ca 1950
computers

quantum information theory

information theory gu. superpositions » no-cloning theorem » secure gkd
information: Sgp, > 0 qu. correlations » non-locality » qu. computing
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D ZFrirrIr T

Tasaki (2000), Kurchan (2000), Mukamel (2003)
2M: Talkner, Lutz, Hanggi PRE (2007)

Quaﬂtum JarzyﬂSKI eq Ua“ty 1M: Mazzola, DeChiara, Paternostro, PRL (2013)

Oisolated system ‘

thermal final non-
initial state _BH, 4 equilibrium
_C _ — Vo VT state
Po Zo protocol = changing Pr Po
Hamiltonian H in specific
Hy = Z EQ 1L way generates unitary H, = Z E; T
k n

* but one can measure the energy at beginning and end

to establish a Jarzynski relation need to define fluctuating work W

there is no observable (if there was, work would be a state variable)
same as classical

because evolution is unitary, there is no dissipation and energy change is entirely work
fluctuating work is Wy, = E7 — E} occurring with probability
and exponentiated average is Pk = tr[IL, VI po 1Ty VI
(e PW) = ppme M= Zr _ oBAF e~ 7Bk
n,k

ZO ZQ

tr[V II V7]
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D ZFrirrIr T

Tasaki (2000), Kurchan (2000), Mukamel (2003)
2M: Talkner, Lutz, Hanggi PRE (2007)

Quaﬂtum JarzyﬂSKI eq Ua“ty 1M: Mazzola, DeChiara, Paternostro, PRL (2013)

Oisolated system I

thermal final. non-
initial state 4 equilibrium
e PHo _ v, T State
Po = Zo protocol = changing Pr =V Po
Hamiltonic " in specific
Hy = ZEQ T, way gene H, = ZEZ 11},
k n
. . . Quant
- to establish a Jarzynski relation nee’ Um /ar
S,

- there is no observable (if there wag am@ % nsk,-
* but one can measure the energy at beginmn.. _ S’Ca/ n
« because evolution is unitary, there is no dissipation arn. 2ntirely work

fluctuating work is Wy, = E7 — E} occurring with probability

_ T 0 O v/ T117

and exponentiated average is Pr,n = tr[ILy VI po Iy VLT

. 0

(e PM) = prneMWin = Zr _ BAF e O
n,k

ZO ZO

tr[V II V7]



from ca 1800 engines from ca 1995

P g microscopic ( —BW>
description of €
macroscopic — /

thermodynamics e BAF

single ion engine - Singer group

stochastic

i thermodynamics Py
thermodynamics quantum
1st: AU = <Qabs> — (Wemt> fluctuation
relations

ond: TAS:, > (Qabs)

+ information is physical

Ssn = Stn

- information erasure _ > i
causes heat dissipation| Landauer 1961

quantum thermodynamics

resource theory

-« |0>

from ca 1980
qubit

\/

Son — Sun S )y

from ca 1950

computers DE—Y

quantum information theory

information theory gu. superpositions » no-cloning theorem » secure gkd
information: Sgp, > 0 qu. correlations » non-locality » qu. computing




Resource theory: Single shot extractable work

Horodecki+Oppenheim
a b NComm (2013)

£ T |w) Aberg, Nature Comm.
,.' 9 \ gap=1w 41925 (2013)
! ™
T 0)w Gemmer, Anders,
NJP 17, 085006 (2015)

Global unitary on system, bath and work storage system

trsg[V (ps ® 78 ® [0)w (0]) V1] ~ |w)w (w] ps diagonal in energy
V' commutes with global H
What is maximum Ww so that this outcome happens with probability 1 — ¢

single shot work instead of average work
WP < F™(pg) — F(7s) (W) < F(ps) — F(7s)

Valid for running experiment on one system, but it is not the fluctuating work.

For many copies, ps — ps ® ps @ ps... this converges w*** — (W)
fore — 0



Single shot extractable work

Global unitary on system, bath and work storage system

trspV (ps ® 78 @ |0)w (0)) V] ~ |w)w (w| ps diagonal in energy

V' commutes with global H

stay in same global
energy subspace
E{ {

Es+ Egp+0 — E,S + E;; 4+ w

Vinjanampathy, Anders,
Contemporary Physics (2016)



Single shot extractable work

single shot work
W™ < F"(ps) — F(rs)
1

' . —-BE
Femm(ps) = _B In Z e s h(Es,gs,G).
1 Es.9s
" (ps) = _E In tT[HpS 7s) + F(7s) Horodecki+Oppenheim
Nature Comm. 4 2059 (2013)
global probability a b
block for system E E
state |Eg, gg) Pini (1~ €) Py 1mp+Py+Pg feoccccccccccaaaaaann. - N S
e A = N $ o — :
py feennen e P !.,,
T T .
| N
2 il MiE-Ey i o ®  Gemmer, Anders,
— — NJP 17, 085006 (2015)




Resource theory: Single shot extractable work

Horodecki+Oppenheim
a b NComm (2013)
<
1 W) w Aberg, Nature Comm.
4—' 9 ‘ gap=w 41925 (2013)
T \ r O |O>W

finite size effect -
not quantum effect

Global unitary on system, bath and work storage system

trss[V (ps ® 78 @ [0)w (0]) VT] ~ |w)w (w) pPs diagonal in energy
V commutes with global H

What is maximum Ww so that this outcome happens with probability 1 — ¢
single shot work instead of average work

wi < FM™(pg) — F(ts) (W) < F(ps) — F(7s)

Valid for running experiment on one system, but it is not the fluctuating work.

For many copies, ps — ps ® ps @ ps... this converges w*** — (W)
fore — 0



Jarzynski, PRL (1997)
Qu: Talkner, Lutz, Hanggi PRE (2007)

Classical fluctuation relation

UNIVERSITY OF

EXETER

Quantum resource theory

Horodecki, Oppenheim
Nat. Comm (2013)

Jarzynski non-equilibrium work equality
<6—BW> _ e—BAF

TN

non-equilibrium inverse equilibrium free
work temperature ©Nergy

Quantum fluctuation relation:

make energy measurements to obtain
energetic fluctuations

Quantum Jarzynski relation:
same as classical

Because measurements destroy
coherences between energies.

lw)w
) gap= W
T o 0w

trsp[V (ps @ 75 @ [0)w(0]) V1] = Jw)w (w]

Obtain bounds on work w that can
be extracted to a qubit in single shot
rather than on average.

Finite size effect -
not a quantum effect

Ps diagonal in energy
V commutes with global H



fromca 1800  engines from ca 1995
g microscopic _BW

o description of <6 >

macroscopic — ,

thermodynamics o BAF

single ion engine - Singer group

stochastic
thermodynamics

thermodynamics
1St AU = <Qabs> - <We:ct>
ond: T'ASy, > <Qabs>

* information is
Ssn =

quantum
fluctuation

Neither identifies a quantum thermodynamics
quantum advantage' resource theory

* information er
causes heat ¢

from ca 1980

SSh N S’UN quIt
from ca 1950
computers
quantum information theory
information theory gu. superpositions » no-cloning theorem » secure gkd

information: Sgp > 0 qu. correlations » non-locality » qu. computing
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EXETER
What is guantum in guantum thermodynamics®
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EXETER
What is guantum in guantum thermodynamics®

* ldea: consider a quantum information process

- Recall: Landauer’s thermodynamic analysis of a classical
information process: “erasure” p — |0)(0] .

el
i
¥l

Landauer 1961
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EXETER
What is guantum in guantum thermodynamics®

* ldea: consider a quantum information process

- Recall: Landauer’s thermodynamic analysis of a classical
information process: “erasure” p — |0)(0] .

 Projections of quantum states (unselective measurements)

projection = state transfer p — Z f[k pf[k =: 10 N t -
gquanitum Sstate

o/
after the

initial quantum

projectors on process
state

energy eigenstates

Sci. Rep. 6, 22174 (2016)
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EXETER
What is guantum in guantum thermodynamics®

 Projections of quantum states (unselective measurements)

projection = state transfer p — Z f[k pf[k =: 10 N t -
gquanitum Sstate

o/
after the

initial quantum

projectors on process
state

energy eigenstates

Sci. Rep. 6, 22174 (2016)
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EXETER

What is guantum in guantum thermodynamics®

_ leo) +lex) 1

V2

()

[9)

77=<1é2

Example: equal superposition of two energy eigenstates

- = 5 (leo)(eo| + lex)(eil)

1(/)2 )

 Projections of quantum states (unselective measurements)

projection = state transfer p — Z f[k P f[k

o/

initial quantum

™~ quantum state

after the
process

projectors on
state

energy eigenstates

Sci. Rep. 6, 22174 (2016)
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EXETER
What is guantum in guantum thermodynamics®

- Optimal implementation can extract maximal work

energy basis (WY = kT (S(ng) — S(p)) >0
projection for initial states
AU =0

with coherences

 Projections of quantum states (unselective measurements)

projection = state transfer p — Z fIk P fIk —-. 1o “
f . / quantum state

after the
initial quantum

projectors on process
state

energy eigenstates

Sci. Rep. 6, 22174 (2016)



UNIVERSITY OF

EXETER
How to perform the optimal thermodyn. process?

» desired state transfer: p — 1)

Decoherence: ¢ This state transfer is achieved by letting
system interact with environment in an
uncontrolled fashion for a long enough time.

* No work is extracted - non-optimal process.
work storage

system

- optimal implementation in
thermodynamic setting?

heat bath



wefi

UNIVERSITY OF

EXETER
Optimal work extraction from coherences

o) Qubit example o, = |eo)(eo| — |e1) (e
€()
() . .
‘ > spin evolution 0) start Wl.th (p’ H = EO-Z)
\ -
85\ 1) change B-field and evolve state unitarily

endingin (p1 =V pV'i, H = Ei0.)
\ such that this pair is thermal

\ 2) connect system to bath, thermalise
and quasi-statically decrease B-field to
end in (p2 =n, Hy = Ey0,)
choosing H such that this pair is thermal

¢ 3) disconnect system from bath, then
‘ B-field evolution quench B-field to initial strength leading
to (n, H)
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EXETER

Optimal work extraction from coherences

equilibrium free energy
F(p) :=U(p) —TS(p)

process isolated, energy change = work
(Weye) = —trlpy Hi — p H]

ext

isothermal, quasi-static process,
work = free energy change

(Weet) = —(F(n) — F(p1))

process isolated, energy change = work
(Wepe) = —tr[n H — 1 H)]

ext

sum of work contributions
(Wezt) = kT (S(n) — S(p))

Qubit example 0. = |eo)eg| — |e1) (e
0) start with (p, H = Eo)

1) change B-field and evolve state unitarily
endingin (p1 =V pV'i, H = Ei0.)
such that this pair is thermal

2) connect system to bath, thermalise
and quasi-statically decrease B-field to
end in (p2 =n, Hy = Ey0,)

choosing H such that this pair is thermal

3) disconnect system from bath, then
quench B-field to initial strength leading
to (n, H)
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EXETER
Work from coherences

- a quantum system that has coherences (eg. in energy basis)
can be brought into a state where these coherences have been
removed - by realisable thermodynamic steps.

 no change of the energy expectation value has occurred AU =0

 but the quantum (vN) entropy of the state has been modified

S(n) # S(p)

« work is extracted from this entropic change

* So - work can be extracted from both: energy populations that
are non-thermal (cl) and also from energetic superpositions (qu)

* the extracted work is done on the field and may be measured



UNIVERSITY OF
Jarzynski, PRL (1997)

. Horodecki, Oppenheim T
Qu: Talkner, Lutz, Hanggi PRE (2007) 2l E E ER

Nat. Comm (2013)

Classical fluctuation relation Quantum resource theory
Jarzynski non-equilibrium work equality b )
w)w
<€ BW> G—BAF \ | gap= W

/

non-equilibrium inverse
work temperat

equilibrium free

b @ |0)w (0)) VT] = |w)w (w]
. : : o
Quantum fluctuation re implications*

make energy measurems
energetic fluctuations

s on work w that can
0 a qubit in single shot
average.

Quantum Jarzynski relation: Finite size effect -
same as classical not a quantum effect
Because measurements destroy Ps diagonal in energy

coherences between energies. V commutes with global H



Tasaki (2000), Kurchan (2000), Mukamel (2003)
2M: Talkner, Lutz, Hanggi PRE (2007)

Quaﬂtum JarzyﬂSKI eq Ua“ty 1M: Mazzola, DeChiara, Paternostro, PRL (2013)

Oisolated system ‘

thermal final non-
initial state _BH, 4 equilibrium
_C _ — Vo VT state
Po Zo protocol = changing Pr Po
Hamiltonian H in specific
Hy =Y FEQII} way generates unitary H; = Z E7 L
k n

* but one can measure the energy at beginning and end

to establish a Jarzynski relation need to define fluctuating work W

there is no observable (if there was, work would be a state variable)
same as classical

because evolution is unitary, there is no dissipation and energy change is entirely work
fluctuating work is Wy, = E7 — E} occurring with probability
and exponentiated average is Pk = tr[IL, VI po 1Ty VI
(€)= prne Wen = Zr _ ¢=BAF e~ 7Bk
n,k

ZO ZQ

tr[V II V7]



Tasaki (2000), Kurchan (2000), Mukamel (2003)
2M: Talkner, Lutz, Hanggi PRE (2007)

Quaﬂtum JarzyﬂSKI eq Ua“ty 1M: Mazzola, DeChiara, Paternostro, PRL (2013)

Oisolated system ‘

thermal final non-
initial state _BH, 4 equilibrium
_C _ — Vo VT state
Po Zo protocol = changing Pr Po
Hamiltonian H in specific
Hy =Y FEQII} way generates unitary H; = Z E7 L
k n

 but one can measure the energy at beginning and end

to establish a Jarzynski relation need to define fluctuating work W

there is no observable (if there was, work would be a state variable)
same as classical

because evolution is unitary, there is no dissipation and energy change is entirely work
fluctuating work is Wy, = E7 — E} occurring with probability
and exponentiated average is Pk = tr[IL, VI po 1Ty VI
(€)= prne Wen = Zr _ ¢=BAF e~ 7Bk
n,k

ZO ZQ

tr[V II V7]
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because evolution is unitary, there is no dissipation and energy change is entirely work

fluctuating energy A F/ = E” — E} occurring with probability
_ T 0 T

and exponentiated average is Prn = tr(II}, VI, po TT, VTHn]
_ _ 7. _ ~BEy,
<€ IBAE>: Zpk,ne BWion _ 2T _ g=BAF € "

ZO ZO

tr[V II V7]



Resource theory: Single shot extractable work

Horodecki+Oppenheim
a b NComm (2013)

£ T |w) Aberg, Nature Comm.
,.' 9 \ gap=1w 41925 (2013)
! ™
T 0)w Gemmer, Anders,
NJP 17, 085006 (2015)

Global unitary on system, bath and work storage system

trsg[V (ps ® 78 ® [0)w (0]) V1] ~ |w)w (w] ps diagonal in energy
V' commutes with global H
What is maximum Ww so that this outcome happens with probability 1 — ¢

single shot work instead of average work
WP < F™(pg) — F(7s) (W) < F(ps) — F(7s)

Valid for running experiment on one system, but it is not the fluctuating work.

For many copies, ps — ps ® ps @ ps... this converges w*** — (W)
fore — 0



Quantum Thermo: Single shot extractable work

pPs diagonal in energy Ps not diagonal in energy

single shot work
W™ < F"(ps) — F(rs)

Decohere first then extract work

not the maximum? in general (W°P) = kgT (S(n) — S(p))



UNIVERSITY OF

EXETER

Implications

AU = <Qabs> — <Wext>

thermodynamics
TASy > (Qabs)

Sth = SuN link between thermodynamics and information theory

# Link between thermodynamics
‘ and information theory is

different in the quantum regime.

1st + 2nd law are different in \

Removing quantum thermodynamics. E.g. thermodynamic
coherences can \ entropy not equal to
lead to work How? Classical limit? von Neumann
extraction. entropy but energy

\ entropy?

Experimental confirmation?



UNIVERSITY OF

EXETER
Summary: Work from coherences

Landauer found that the only information processing task that
has an optimal non-trivial thermodynamic aspect is erasure.

Same result for classical and quantum information.

|€o)
0 Projections are a second kind of information

processing task with an associated work.

Work only from quantum states with coherences.

Scientific Reports

6:22174 (2016) _ ,
Coherence work can be important for analysis of

thermodynamic experiments that involve measurement.



Quantum thermodynamics - Motivation

Quantum thermodynamics m/1kg
- include small ensemble sizes
- include non-equilibrium properti

e quantum

Quantum
Thermodynamics
Contemporary Physics
57, 545 (2016)

Sai Vinjanampathy
[ITB Bombai

Further reading: E PS RC

UZdin’ et al’ PRX 5’ 031044 (201 5) Engineering and Physical Sciences
Research Council

Solinas, et al, PRX 92, 042150 (2015)

Klatzow, et al, PRL 122 110601 (2019) [0l THE ROYAL

@]% SOCIETY
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Thermodynamics in the quantum regime




