Quantum optics and information with trapped ions

- Introduction to ion trapping and cooling
- Trapped ions as qubits for quantum computing and simulation
- Rydberg excitations for fast entangling operations
- Quantum thermodynamics, heat engines, phase transitions
- Implanting single ions for a solid state quantum device

Mainz, Germany: ⁴⁰Ca⁺

History of classical information processing

Digital Information processing

...enter the beauty of solid state physics

Single P-ion qubit devices in Silicium – Kane proposal

NV, SiV, Pr, ... Implant patterns

139 (2013)

Single donor-based architecture

Silicon quantum processor with robust short & long-distance qubit couplings, P-ions in Si,

Kane, NaturePlace393, 133 (1998)496,

Pla et al. Nature 496, 334 (2013)

z-gates		x(y)-gates			2-qubit √iSWAP gates			Photonic link
τ_{π}	Error	τ _{π/2}	Power	Error	Distance		Error	Coupling
70 ns	s 10 ⁻⁴	30 ns	<1 pW	10 ⁻³	100–500 nm	40 ns	10 ⁻² -10 ⁻³	$g_E^{\rm ff}$ = 3 MHz

Tosi et al. Nat. Com. 8, 450 (2017)

Single donor-based architecture

Silicon quantum processor with robust short & long-distance qubit couplings, P-ions in Si,

Pla et al. Nature 496, 334 (2013)

..... zoom in further

Proposal: Quantum simulation with atomic emitters

Perczel et al. PRL 119, 023603 (2017)

- Rare earth emitters in honey comb structure
- subwavelength spacing
- Protection againts imperfections and noise
- Topological edge states
- Propagating in unidirectional mode

Guimond, et al, PRL 122, 093601 (2019)

 Super/sub radiant states from array

Proposal: Hybrid single donor-based architecture

Interfacing single donors, e.g. Bi, to superconducting circuits

Join:

- Scalable architecture of superconducting qubits
- Long coherence times of single donors

Kurizki et al. PNAS 112, 3866 (2015)

Haika et al. PRA 95, 022306 (2017)

Single donor-based architectures

- Silicon quantum processor with robust short & long-distance qubit couplings, P-ions in Si
- large single photon emitter structures for quantum simulation with e.g. REI, NV's, SiV's ...
- Interfacing single donors, e.g. Bi, Er, NV ... to superconducting circuits

Pla et al.	Nature
496, 334	(2013)

Haika et al. PRA 95, 022306 (2017)

Perczel et al. PRL 119, 023603 (2017)

Challenges:

- implant arrays of single donor atoms
- with technological interesting ions, e.g. P, REI, ... pure
- in 5...15nm depth with <10nm accuracy
- with respect to gate electrodes

Cold ions source for microscopy and impantation

- Load and cool, eventually extract, single ions directly
- Trapping of all charged particles, with large range of m/q
- Doppler cooling, eventually cooling to quantum mechanical ground state, Heisenberg uncertainty relation $\Delta p_x \Delta x \ge \hbar/2$

Paul trap as deterministic source - features

- top-down method
- deterministically single ion
- various doping ion species
- low energies (0eV... 6keV... 20keV)
- nm resolution
- low throughput

Jakob et al, PRL 117, 043001 (2016)

Schnitzler, et al., PRL 102, 070501 (2009) Meijer et al, Appl. Phys. A (2006) 83: 321

Segmented linear Paul trap

Loading and Cooling of Ca⁺ lons

Loading and Cooling of Ca⁺ lons

potential is shaped to force excess ions to leave the trap

exacly one ion is trapped

Automatic Extraction of Ions

Beam profiling

Beam profiling

Complete experimental setup

Electrostatic Einzel-lens

Lens characterization G. Jakob, PhD (2017)

Beam profiling - result

Jakob et al, PRL 117, 043001 (2016)

Beam profiling - result

Determined source size $\sigma_x = \sigma_y \cong 50$ nm, but vibrations limit spot

Universal deterministic ion source

- Extending to more ion species
- Combinations of ion species
- Gas targets
- Laser ablation of solid targets
- Wien filter and ToF identification

Nitrogen N₂+, Praseodymium, Argon, Xenon, Cerium, Phosphorous, Bismut

TOF data identifying doping ions

TOF data identifying doping ions

Groot-Berning et al, PRA 99, 023420 (2019)

Luis Ortiz

K. Groot-Berning F. Stopp

TOF data identifying doping ions

Groot-Berning et al, PRA 99, 023420 (2019)

Luis Ortiz

K. Groot-Berning F. Stopp

Single ion doping with Nitrogen molecular ions

- ¹⁵N₂⁺ ions implanted from
 isotopically pure gas sample
 @6keV
- NV centers observed
- 0.6% yield
- NV- centers
- Nuclear species identified from ODMR resonance

with F. Jelezko @ Ulm

Confocal 2-photon microscope for Pr³⁺

- shooting pattern into YAG
- anneal 1min @ 1200°C

with R. Kolesov, J. Wrachtrup @ Stuttgart

Kornher et al, Appl. Phys. Lett. 108, 053108 (2016) Groot-Berning et al, arXiv:1902.05308

Confocal 2-photon microscope for Pr³⁺ ions in YAG

University of Stuttgart 3. Physikalisches Institut

Kornher et al, Appl. Phys. Lett. 108, 053108 (2016) Groot-Berning et al, arXiv:1902.05308

Determination of impantation spot size

- Optical confocal image resolution
- Fit observed fluorescence spots

precision

Determination of impantation spot size

- Optical confocal image resolution
- Fit observed fluorescence spots
- precision / accuracy

Single ion microscopy

with C. Henkel, Folman, Keller, Huth

Focus a single ion beam into a structure Precursor $HCo_3Fe(CO)_{12}$

Single ion microscopy

single ion transmission image

Ca+ ions @6keV

Single ion, 20µm pixel size

Single ion, 25nm pixel size

Carbon foil transmission sample

3 ions per pixel

Resolution here: (100x100) nm²

gating by the extraction of the detector → supression of dark counts

imaging with single particle exposure avoids sample charging or damage

Single ion microscopy

800 600 y-position (nm) 400 200 0 200 600 800 400 0 x-position (nm)

Photonic Diamond Structure (electr. microscope)

um7

0 0 . . .

8

. 0

8 0 C .

Probe: Riedrich-Möller, et al., Nat. Nano. 7, 69 (2011)

Single ion microscopy – semitransparent sample

TEM quantifoil grid with graphene

Single ion 10µm pixel size

Single ion microscopy – semitransparent sample

with Jannik Meyer @Wien

Ca+ ions @3keV Single layer graphene T=8.5% Double layer graphene T=0.69%

From ToF: $\Delta v/v$ reduced by 1% and spread increased by x36

Single ion 500nm pixel size

Second generation setup

- Compact & high mech. stability
- Aiming for < 2 nm
- Modular design
- kHz-rate reloading from "reservoir" trap segment
- Species: Phosphor, Cerium, Bismuth...
- Fast changing probes with lock

Applications of single ion implantation in quantum computing and nanostructuring technologies

The team

Coll.: Folman, Retzker, Wrachtrup, Meijer, Lesanowski, Hennrich, Zanthier, Lutz, Budker, Walz, Plenio, Jelezko, Calarco, Jamieson, Blatt

TRALING MEDBARCH COCHCIL DENTINE OF CACESLANDS

FUNDING OPPORTUNITIES from the

Ry 📉 🖉 i Ryd

Quantum optics and information with trapped ions

- Introduction to ion trapping and cooling
- Trapped ions as qubits for quantum computing and simulation
- Rydberg excitations for fast entangling operations
- Quantum thermodynamics, heat engines, phase transitions
- Implanting single ions for a solid state quantum device

Mainz, Germany: ⁴⁰Ca⁺

www.quantenbit.de

F. Schmidt-Kaler

IGIL

Rydberg atoms and cavities

Giant dipole, long lifetime – strong coupling regime & realization of Jaynes-Cummings Hamiltonian

Raimond, Brune, Haroche, RMP 73, 565 (2001)

Haroche, Raimond, Exploring the Quantum

Rydberg atom serves as electric field sensor

Direct evidence of cavity field

quantization

Brune, Schmidt-Kaler, Maali, Dreyer, Hagley, Raimond, Haroche, Phys. Rev. Lett. 76, 1800 (1996)

Entangling individual neutral atoms

Tailoring the dipole-blockade

Lukin, Fleischhauer, Cote, Duan, Jaksch, Cirac, Zoller, PRL 87, 037901 (2001)

C-NOT gate between two atoms held in optical tweezer

Saffman, Walker, Mölmer, RMP **82**, 2313 (2010)

Isenhower, Urban, Zhang, Gill, Henage, Johnson, Walker, Saffman, PRL 104, 010503 (2010)

Wilk, Gaëtan, Evellin, Wolters, Miroshnychenko, Grangier, Browaeys, PRL 104, 010502 (2010)

Making two or more atoms/ions/spins interact...

Müller, Liang, Lesanovsky, Zoller, NJP 10, 093009 (2008)

Experimental Challenges for exciting Rydberg states in trapped ions

• Unfriedly wavelenght range 100nm...150nm

Develop reliable and narrow VUV source @ 122nm few µW laser power / optimize difficult beam delivery Or multi-step excitation with UV

- Single / few ion crystal
 - Develop electron shelving detection with high single-excitation detection efficiency
- Hostile high electric alternating RF field of a Paul trap

Optimized ion trap & optimized trap operation parameters, compensation of electric field (micro-motion compensation)

122nm four wave mixing

Walz et al, PRL83, 3828 (1999) Opt. Express 17, 11274 (2009)

...laser system for anti-H spectroscopy

Line shape model

- Optimized segmented linear Paul trap
- Compensation of the electric field to position ion at center
- Single ⁴⁰Ca⁺ excitation on single photon transition in VUV near 122 nm
- < 1µW of VUV light from 4-wave-mixing
- Detecting 397 nm fluorescence

- Rydberg excitation of single ion $3D_{3/2} \rightarrow 51F$
- Large polarizability of Rydberg F-states leads to line broadening by electric field at the ion position
- Order of magnitude weaker influence for Rydberg P-states

Line shape model: Electric oscillating field

Uncompensated axial micro motion (from electrode misalignment) $\sim 10-50$ V/m depending on RF amplitude $\omega(t) = \omega_0 + kx_{mm}\Omega\sin\Omega t - \frac{\alpha E_{ion}^2}{2}\cos^2\Omega t$. Doppler shift Stark shift

Bessel-modulated line from periodic Stark and Doppler shift

Rydberg spectroscopy

- Determine resonances, e.g.
 3D_{3/2} → 23P_{1/2} at 94 807.798 8(4) cm⁻¹
- Identify levels
- Deduce quantum defects
- Measure polarizabilities
- Control E-field in the Paul trap in 3D micromotion compensation <10V/m

Two-photon Rydberg excitation of 25S_{1/2} in ⁸⁸Sr⁺

Talk by M. Hennrich, Stockholm, Thursday 16:15h

- 1) Excite a superposition of $D_{5/2}(\downarrow)$ and Rydberg state (\uparrow)
- 2) Apply electric kick
- 3) n⁷ Rydberg polarizabilty results in spin-dependent potential
- 4) Kick back
- 5) Observe geometric phase

spin-dependent potential:

$$\left(\omega_{\rm t}^{\uparrow}\right)^2 = \left(\omega_{\rm t}^{\downarrow}\right)^2 + \Delta\omega_t^2, \qquad \Delta\omega_t^2 = -\frac{16\beta^2}{m}\mathcal{P}(n)$$

Vogel, Li, Mokhberi, Lesanowski, Schmidt-Kaler, arXiv:1905.05111

Vogel, Li, Mokhberi, Lesanowski, Schmidt-Kaler, arXiv:1905.05111

Trapped ion kicking

Optimize phase shift

Vogel, Li, Mokhberi, Lesanowski, Schmidt-Kaler, arXiv:1905.05111

Recover initial phonon number

Optimize kick duration

 $\tau = 2\pi \left(\omega_2^{\uparrow\uparrow}\right)^{-1}$

Vogel, Li, Mokhberi, Lesanowski, Schmidt-Kaler, arXiv:1905.05111

Fidelity

Quantum optics and information with trapped ions

- Introduction to ion trapping and cooling
- Trapped ions as qubits for quantum computing and simulation
- Rydberg excitations for fast entangling operations
- Quantum thermodynamics, heat engines, phase transitions
- Implanting single ions for a solid state quantum device

Mainz, Germany: ⁴⁰Ca⁺

